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MSP430 Family Introduction

1 INTRODUCTION

The MSPA30 is a 16-bit microcomputer having special features not commonly available
with other microcomputers:

= Complete system on chip (LCDADC, TO, ROM, RAM. Watehdog, UART, Basic Timer)
Extremely low power consumption: only L2 nWs instruction max.
High speed (300 ns instrucetion @ 3.3 MHz with register, register mode)
— RISC strueture (27 instrucetions)
= Orthogonal architeeture (any instrucetion with any addressing mode)
Seven addressing modes for source operand
= Four (five) addressing modes for destination operand
Constant generator for the most commonly used constants (-1.0, 1.2, 1, 8)
Only one erystal necessary due to Frequeney Locked Loop (1911)
Stable MCLK frequeney reached after 6 elocks when woken-up from Low Power
Mode 3

These features make it very casy to progeam the MSPA30 in assembler or in C-language.
For example, despite the low instruetion count of only 27, the MSPA30 is capable of
emulating almost the complete instruction set of the legendary PHP 1

NOTES
It is advised to have the "MSPA30 Architeeture User's Guide and Module

Library” readily available. This book contains valuable information, il-

Additionally the "MSP430 Software User's Guide" is recommended. It
contains further information regarding the instruetion set, besides other
more common software information.

All the examples given refer to the "MSPA30 Family User's Guide” Revi-
sion 044 dated 23.12.93. It can not be guaranteed that new revisions will
behave exactly in the same manner as described in this User's Guide.
See Important Note above.,

1.1 Notation

The following abbreviations and special notations are used:

R4|R3 32-bit number. MSB in R4, LSB in R3

AGND Ground connection for the Analog-to-Digital Converter (V. resp.
AVy)

.or. Logical Or function

.and. Logical And function

.Xor. Logical Exclusive Or function

.not. Logical Inversion
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Introduction MSP430 Family

Sre Source (location where data is read from)

dst Destination (location where data is written to)

SP Stack Pointer

pPe Program Counter

TOS Top of Stack (data word the Stack Pointer SP points to)
MSB Most significant bit (or byte)

L.SB Least significant bit (or byte)

DCO) Digitally Controlled Oscillator

BCDH Binary Coded Decimal (numbers 0 to 9 coded by 4 bits)

1.2 The MSP430 Versions
The MSPASO family currently consists of two types:

[ The MSPA30X32x
2. The MSPA30XSIx

Both types are deseribed in depth in the "MSPA30 Family Arehiteeture Guide and Module
Library". The only differences between the two members are listed below:

Hardware Item  MSP430x32x MSP430x31x

LCD Seleet lines 21 23

ADC Measurement Prineiple Suceessive Approximation Capacity discharge
Package 64QI°P DESSOP

I not mentioned otherwise, the examples and explanations are valid for both members.

1.3 The Operating Modes used for Metering Applications

The MSPA30 metering applications fall into two main classes depending on the power
supply:

~ Llectricity meters that are powered from the mains. The micro computer needs to be
active all the time, but due to the low current consumption of the MSP430 (max.
L4 mA @ HV) this is not a problem, despite the need for low power consumption
(system consumption < 40 mA).
Batiery driven applications such as gas meter, water flow meter. heat volume count-
ers ete. For these applications the power consumption plays an overwhelming role be-
cause these applications have to run from one battery for more than 10 yvears. The
current drawn by the MSP430 needs to be in the range of the self discharge current of
the battery, which means 4 to 6 A

The MSPA30 offers six operating modes, with different current consumption. Three of
them are important for batterv-driven applications:

1. The Aetive Mode with running CPU.

{’} TEXAS INSTRUMENTS



MSP430 Family Introduction

2. The Low Power Mode 3: the normal mode for all applications during 99% to 9990 of
the time. This mode is also called Done Mode or Sleep Mode.

3. The Low Power Mode 4: the mode used during storage times. This mode is also called
Off Mode.

1.3.1 The Active Mode

This mode is used for caleulations, decisions and other activities that make a running
CPU necessary. Allof the peripherals may be used provided that they are enabled. Al of
the examples shown in this guide use the Aetive Mode.

1.3.2 The Low Power Mode 3

The most important mode for all battery driven applications. The CPU is disabled, but
enabled peripherals stay active: LCD driver, Basice Timer, VO-ports, S-bit Timer. The
running Basic Timer allows a precise time base. Fnabled interrupts wake-up the CPU,
switeh on MCLK and start normal operation. The next Tigure shows the status of the
complete MSPA30 system when in Low Power Mode 3 (LPM3):

Active Not Active
RAM cpu
ACLK MCLK
32768 Hz Oscillator Disabled Peripherals
L.CD Driver (if enabled) Disabled Interrupts
Basice Timer (il enabled) I°LL
170-Port
S-bit Timer
I:nabled Peripherals
RESET Logic

To enter the Low Power Mode 3 the following code is necessary:

Definitions for the Operating Modes

GIE .EQU 008h ; General Interrupt enable in SR
CPUOFF .EQU 010h ; CPU off bit in SR

OSCOFF .EQU 020h ; Oscillator off bit in SR

5CGO .EQU 040h ; System Clock Generator Bit 0

SCG1 .EQU 080h ;

Enter Low Power Mode 3, enable interrupts
BIS #CPUOFF+GIE+SCG1+SCG0O,SR ; Enter LPM3

After the completion of the interrupt routine the software returns to the instruction that
set the CPUoff bit. The normal wake-up for the LPM3 comes from the Basic Timer: it is
programmed to wake-up the CPU at regular intervals (ranging from 0.5 Hz to 64 Hz or
higher) to maintain a software timer. This software timer controls all necessary system
activities.
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EEXAMPLE: The MSPA430 system runs normally in LPM3. The enabled interrupt of the Ba-
sic Timer wakes-up the system every second. If one minute clapses. measurements are
made and afterwards the system returns to LPM3.

. Interrupt handler for Bacico Timer: viake-up with 1 Hz
21 HAILL | ORI, 1 oECCHT ;o Counter for

RSN #60, SECCTIT ;1 minute el

JHD MIIT] ;o o, neo

FPETI ; No return b
o One minute elapsed: Peturn 1o removed from stack, a
sary tasks 1o made. There it iz decided how

;5 the nec

MTI [rc MINCHT ; Minute counter +1
CLE SECCHT ;00 - CECCNT
ADD #4,0p0 ; House keeping: SF, PO off Stack
BE HTALY ;Do tasks
TACE ; Start of necessary tasko
AL measmrement soand calenlat ions are made: Return to LPMI2
BIS #CPUOFF+GIE+SCGO+5CGL, R ; Enter LPM?

The Low Power Mode 3 is the mode with the Towest current consumption that allows the
use of a real time eloek: the Basie Timer can interrupt the LPM3 at relatively long time
infervals (up to 2 s) and update the real time cloek. I the Status Register is not changed
during the interrupt routines then the RETE instruetion returns to the instruction that
sel the CPUIT bit (and moved the CPU into LPM3). The Program Counter points to the
next instruction but this instruction is not exceuted unless the interrupt routine resets
the CPUofT bit during its run.

I woken up from LPM3 two additional eyeles are needed until the PC s loaded with the
interrupt veetor address and the interrupt handler is started (8 eyeles instead of 6 when
in Active Mode).

ENAMPLI: The MSPA30 svstem runs normally in LPM3. The enabled interrupt of the Ba-
sic Timer wakes-up the system every second. I one minute is over. measurements are
made and afterwards the system returns to LPM3. The branceh to the task is made by re-
setting the CPUoff bit inside the interrupt routine.

; Interrupt handler for Basic Timer: Wake-up with 1 Hz

BT HAN INC.B SECCNT ; Counter for seconds +1
CMP.B #60, SECCNT ;1 minute over?
JHS MINL ; Yes, do necessary tasks
RETI ; No return to LPM3

; One minute elapsed: CPUoff is reset, the program continues
; after the instruction that set the CPUoff bit

MINL CLR SECCNT ; 0 -> SECCNT

INC MINCNT ; Minute counter + 1
BIC #CPUOFF, 0 (SP) ; Reset CPUoff-bit to continue
RETI ; at DONE+2
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und part: Return to LPM3

DONE RIS RCPUOFF+GIE+SCG0+00GL, SR Enter LPMA

Sgram continues here if CPUOLE Dit was reset inside ot the
asic Timer Handler.

Tasks made every minute
JMP DONE ;o Back to LPM3

1.3.3 The Low Power Mode 4

The Low Power Mode 4 (LPMA) is used if the lowest supply current is necessary or il no
timing is needed or desired (no change of the RAM content allowed). This is normally the
case for storage times preceding or following the calibration process. The next figure
shows the status of the complete MSPA30 system when in LM

Active - Not Active
RAM cpu
1/0-Port MCLK
Enabled Interrupts ACLK
RESET Logic I'LL

Disabled Peripherals
Disabled Interrupts
Watchdog

Timers

When woken-up the software has to decide if it is necessary to enter the LPMA again (il
the wake-up was caused by EMI e.g.) or if one of the other operating modes is to be en-
tered. To ensure this decision a code can be given to a port that can be cheeked by the
MSPA30 software: only if this code is present is the Active Mode entered.

To enter the Low Power Mode 4 the folowing code is necessary:
Enter LPM4, enable GIE

BIS #CPUOFF+0OSCOFF+GIE+SCG1+5CG0, SR
The way out of the LPM4 is principally the same as shown with LPM3. The software of
the interrupt handler has to decide if the CPU stays active or il a return to a low power
mode is necessary.

When entering the LPM4 the information in the control registers of the System Clock
Frequency Integrator SCFI0 and SCFI1 remains stored. If at this time the ambient tem-
perature is high, the register SCFI1 contains a relatively high value to compensate the
negative temperature dependence of the DCO. If the LPM4 is left afterwards with a very
low ambient temperature then it is possible that the resulting DCO frequency is outside
of the oscillator's range. Therefore it is a good programming practice to set the Svstem
Clock Frequency Integrator to a low value before entering the LIPM4.
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CLEC
FRC ALCFTL
BEIO #OPUOFF+OLCOFF+GIE, CF

1.4 Use of the System Clock Generator

The System Clock Generator of the MSPA30 family allows a lot of features not available
with other microcomputers. To allow the full use of all the possibilities some basices con-
cerning the function of the oscillator are needed. A detailed deseription of the hardware
is given in the "MSPA30 Family Architeeture User's Guide and Moduale Library™: see chap-
ter 6 "Oscillator and System Clock Generator”,

The output frequency MCLK of the System Clock Generator is generated in the Digitally
Controlled Oscillator (DCO), having 32 "taps”. Each of these taps represents an output
frequency ranging from 500 kHz to 4 MHz typically. These tap frequencies depend on
temperature and supply voltage and referencing to aerystal is necessary therefore.

o Goftware detinitions for the programoing examples

5061 e 080h ;o Gyotem Clock Generator Control Bit

006G L 040h ; Oystem Clock Generator Control Bit O

O5CoL e 020h ;o Lf 1 Oscillator off

CPuoff Lequ 010h ;I 1: cPU off

GLE Lo 008h ; General Interrvupt Enable Bit

SCEI0 oo 050h ; System Clock Frequency Integrator Reg.

FN 2 equ 004h ; DCO current switch for 2 x fnom

SCETL Lequ 051h ; DCO tap register 279 to 270

TAP Lequ 008h ;275 bit in SCFIL

SCFQCTL L equ 052h ; System Clock Frequency Control Reglstern
L equ 080h ; Modulation Bit in SCFQCTL

M

1.4.1 Initialization

After the applying of the supply voltage Vi the system cloek frequeney Iy .y is initial-
ized o 1.024 MHz. This is automatically made by setting of the multiplication factor N to

32 and clearing of the FN_X bits. If the CPU is always on afterwards and 1.024 MHz is the
wished frequencey, nothing else is to do.

1.£.1.1 First Setting of the DCO Taps during Initialization

The Digitally Controlled Oseillator of the MSP430 starts at the tap 0. which means at the
lowest possible frequeney. To get from one tap to the next one. 2 (1024) cyveles are
needed. Thirty-two taps are implemented. so 32 x 1024 eyeles are needed worst case to
get to the correet DCO tap. The initialization routine should have a length of 32000 cycles
therefore. If this is not the case a delay routine should be added to guarantee this length.
An example is given below:

INIT ; Loop Control is on (SCGl = SCGO = 0)
MOV #11000,R4 ; Init delay to allow DCO setting
LSl DEC R4 ;11000 x 3 cycles = 33000 cycles
JNZ Lsl ;
BR #MAINLOOP ; Start program
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1.4.2 Entering of Low Power Mode 3

The Low Power Mode 3 (LPM3) (erystal on, DCO and loop control oft) is the normal mode
for battery driven systems. Enabled interrupts (e.g. the Basie Timer) wake-up the CPU.
LPM3 is entered with the following source code:

BIS #CPUCEE+GIE+2CGL+8CG0, SR ;o Enter LPM3

1.4.3 Wake-up from Interrupts in Low Power Mode 3

Wake-up from LPM3 clears only bit SCG1. Due to the set bit SCGO the loop control of the
DCO is off. Normal interrupt routines are too short to allow the loop control to adjust the
DCO tap: 1024 eyeles are necessary to get from one tap to the other one. It is not neces-
sary therefore to switeh on the loop control. The CPU uses the DCO tap set during (he
last adaptation. A normal, short interrupt routine looks this way:

ET HAND INC COUNTER ;o Loop control stays ott:
FETI ; DCO 1s on tor 15 cycles only

I woken-up from LPM3 the interrupt lateney time (6 exeles) is inercased by t(yp.
2us @ 1MHz resp. s @ 2 MHz (it FN_2 = 1), this means S eyeles are needed typically
from the interrupt event to the start of the interrupt handler. The time the DCO needs to
settle to the nominal frequeney is 4 eveles typically.

1.4.4 Adaptation of the DCO Tap during Calculations

The DCO tap of the System clock generator should be updated during longer on-times of
the CPU {e.g. during caleulations). This is necessary especially il aceurate timing of the
instructions is needed. During all calculations that exceed 100 eycles in length the loop
control of the DCO should be switched on. The way to do this is to reset the SCGO bit in
the Status Register after the wake-up:

Calculations are to be made. Allow adaptation ot the DCO tap

BIC #5CG0, SR ; Switch on DCO loop control
P Calculate energy (-100 cycles)
RETI ; Return to LPM3 with adapted DCO tap

The RETI instruction restores the CPU mode from the stack as it was when the interrupt
oceurred.

1.4.5 Wake-up from Interrupts in Low Power Mode 4

The Low Power Mode 4 normally lasts much longer than the Low Power Mode 3: it may
last up to months until a stored module is woken-up for calibration. This means that the
environment temperature may have changed seriously. If the LPM4 was entered at a
high temperature, the used DCO tap will be a relatively high one due to the negative tem-
perature coefficient of the DCO. If then the device is woken-up at a low temperature and
the crystal turns on fast, this high DCO tap may lead to a very high DCO frequency the

=1
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svstem cannot operate with, Therefore itis a good programming practice. to program a

low DCO tap before entering LPM4:

;o Enter Low Power Mode 40 Det DOO tap to Z
Mol B #TLP 2, W CFIL ;
BIC HOPUGEE+OSCOEE+GIE+DOG L+ D060

If woken-up from LPMA it may last up to seconds until the erystal has reached its nomi-
nal frequency. The frequency integrator counts down continuously as long as the erystal
oscillator has not started its operation. This lasts until the lowest DCO tap (with the Tow-
est system frequency) s reached. After the start of the crvstal oscillator the loop control
will set the system frequencey Lo its correct value.

1.4.6 Change of the System Frequency

The system cloek frequency depends on two values:

waten

Lo = VXL
with: N Multiplication factor ol the DCO loop
[~ IPrequency of the erystal (normally 32765 Hz)

The normal way to change (he system eloek frequeney is o change the multiplication
factor N. The System Cloek Prequencey Control register SCFQUTL is loaded with (N-1) to
get the new frequeney. To allow the DCO to work always in one of the centered taps (13
fo 18), which gives a sceurity not to be at the frequencey limits of the DCOL three switehes
I'N_2 to FN 1 are implemented in the register SCFI0. These switches inerease the inter-
nal current of the DCO and allow higher output frequencies if set. The switeh nearest to
(he programmed DCO output frequeney should be used.

The switehes PN x sette typically within £ 1 tap if the change is from the nominal fre-
queney of one switeh to the nominal frequencey of the other one. For example il in the ex-
ample below the initial system frequeney is 1Mz, then the new tap is one of the
neighboring taps. This means, (o settle at 2 MHz needs maximum 1024 eyeles (0.5 ms)
only. I I'N_2 is not used, it would take up to 16X 1024 exeles (8 ms) because the mis-
alienment could be up to 16 taps.

Change system frequency to 2.048 MHz (fcorystal

N = 64 : Multiply 32 kHz by 64 to get 2.048 MHz
FN_2 l: Adjust DCO current to O MHz
;M= 0 : Switch on modulation
MOV. B #64-1,&SCFQCTL ; 64 x 32 kHz = 2.048 MH:z
MOV. R HFN_2, &SCFI0 ; Adjust DCO current to 2 MHZ
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1.4.7 Use of the Modulation Bit M

The modulation bit M switches off and on the influence of the 5 LSBs of the System Cloek
Frequencey Integrator:

M=0: the modulation is on. this means all 10 bits of the integrator influence the
DCO. The used tap of the DCO may be changed with every cloek evele to get
the correet system cloek frequeney. This is the case if the programmed fre-
quencey lies exactly between two tap frequencies,

M=1: the modulation is off, this means only the 5 MSBs of the integrator influence
the DCO. The used tap of the DCO is changed only after 1024 clock eveles to
get the correet system elock frequeney. If the programmed frequeney lies ex-
actly between two tap frequencies, then 1024 eveles are output with the lower
tap and 1024 eveles are output with the upper tap.

Inany case. independent of the modulation status, the integral error of the DCO will be
7010,

The modulation may be switched off if a series of MCLK eveles is needed with exaetly (he
same length. To get this the loop control needs to be switehed off too.

ure stable, non regulated output pulses with equal length:

BIS.B #5CGO, SR Switch oft loop control
BIS.B #M, &SCFQCTL ; Switch off modulation
; Use non-reqgqulated MCLK

Feturn to regulated MCLK

BIC.B #5CGO, SR ; Switch on loop control
BIC.B #M, &SCFQCTL ; Switch on modulation

1.4.8 Use without Crystal

If in an application no LCD and no precise timing is necessary, then the erystal may he
omitted. If no ACLK is present (due to the missing crystal) then the DCO will run with its
lowest frequency which is approximately 500 kHz. No special instructions are NeCessary
to get this behavior.

If this lowest DCO frequency is too low, then a higher DCO tap (e.g. 10) may be used. This
tap normally results in a MCLK frequency near 1 MHz. It is important to switch off the
FLL loop, otherwise the FLL control will step down to tap 0 slowly. The software for this
use of the DCO follows:

; Initialization of the DCO for non-crystal mode:
; Loop control off, tap number = 10

BIS.B #SCGO,SR ; Switch off loop control
MOV.B #2,&SCFIO ; Set bit 271 of tap number
MOV.B #2,&5CFI1 ; Set bit 273 of tap number

%3 TEXAS INSTRUMENTS 9
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2 THE ANALOG-TO-DIGITAL CONVERTERS

Two completely different Analog-to-Digital Converters (ADCs) are used. depending on

the MSPA30 device type:

~ MSPA30032x contains a successive approximation ADC with 13- and 12-hit resolution

— MSPA30C3 X contains a capacitor discharge unit which allows comparison of dis-
charge times with measuring resistors (resistive sensors).

2.1 The 14-bit Analog-to-Digital Converter
This ADC of the MSPA30 is usable in two different modes:

~ 14-bit ADC with an input range of the complete SV, The ADC searches automatically
which one of the four ranges is currently appropriate to the input voltage. This
searching adds 30 MCLK eyeles to the conversion time. The complete conversion time
for a 14-bit conversion is 132 MCLK eycles
12-hit ADC with four ranges. Fach range covers one fourth of the SV . This conver-
sion mode is used if the voltage range of the input signal is known. The conversion
needs 96 ps.

The sampling of the ADC input takes 12 MCLK eyeles, this means the sampling gate is
open during this time (12 ps @ 1 MHz). The input of an ADC pin can be seen as an RC
low pass filler: 2 k€ in series with 32 ple. The 32-pl* capacitor must be charged during
the 12 MCLK eyeles to the final value to be measured. This means within 214 of this
value. This time limits the internal resistancee R ol the source to be measured:

120
In 2"

(R + 2kQ) x 32pl <

Solved for R, this results in:
i <36.6kQ

FFor the full resolution of the ADC the internal resistance of the input signal must be
lower than 36.6 k€.

Il a resolution of nobits is sufficient then the internal resistance R; of the ADC input
source can be higher:

12 Lok o B < 375000 210
In 2" x 32pk ' In 2"

R <

EXAMPLE: To get a resolution of 13 bits, what is the maximum internal resistance of the
input signal?

10 {',‘ TEXAS INSTRUMENTS
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375000 370000
R <Aiilill-4—2A12::-i13(‘!7*72L12 = HLGAQ — 25 = 39.65€
' In2" 9.010¢

The internal resistance of the input signal must be lower than 39.6 k€.

The next figure shows different methods how to conneet analog signals to the MSP30;

1. Current supply for resistive sensors (R, at A0)

2. Voltage supply for resistive sensors (R, at A1)

3. Direet conneetion of input signals (V,, at A2)

L E=Wire circuitry with current supply (R, A3 Lo AD)
o =Wire eireuitry with voltage supply (R, at AG Lo AT)

1 SVee
Rext u
—1 R
S PV
1 A1
Rsens1 — A0 ; -
MSP430
AGND AGND ——
Vss Vee
ov 15V
Figure 2.1: Possible Sensor Connections to the MSP430

2.1.1 The Current Source

A stable, programmable Current Source is available at the analog inputs A0 to A3, With
a programming resistor R between pins SV and R, it is possible to get defined cur-
rents out of the programmed analog input An: the current is directly related to the volt-
age SV . The analog input to be measured and the analog input for the Current Source
are independent of each other: this means that the Current Source may be programmed
to A3 and the measurement taken from A4, as shown in the example above.

When using the Current Source, it is not possible to use the full range of the ADC: only
the range defined with "Load Compliance” in the Eleetrical Deseription is usable
(0.5 5V, in Revision 0.44, which means only ranges A and B).

The current I defined by the external resistor R, is:

;- 025xsY,
‘ R

ot
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The input voltage at the analog input with the current I and a sensor R s

0.25% SV,

Yt

2.1.2 The 14-bit Analog-to-Digital Converter used in 14-bit Mode

The 14-bit mode is used il the range of the input voltage exceeds one ADC range. The in-
put signal range is from analog ground (V) to SV, (V).

ADC Value

O3FFFh =

03000h -

020000 -

01000h —
00000h — Input
0 0255vdd  055Vdd  075Svds  Svdg O'°
Figure 2.2: Complete ADC Range

The nominal ADC formulas for the 14-bit conversion are:

v Ve on Ly NxV,,
‘ l = % 518!
et =
with: N 14-bit result of the ADC conversion
Vi Input voltage at the selected analog input A
Vi Voltage at pin SV (external reference or internal V)

If the current souree is used, the above equation changes to:

RY ORI
N = (L"")Xl'z! x&x‘l” — ixg‘-‘
R, L

This gives for the resistor R

PR

El o1
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with: R, Resistor between SV pinand R, pin (defines current 1)
R Resistor to be measured (conneeted to A_and A,

2.1.2.1 ADC with signed signals

The ADC of the MSP430 measures unsigned signals from V. to V. If signed measure-
ments are necessary then a virtual zero-point has to be provided. Signals above this
zero-point are treated as positive signals: signals below it are treated as negative ones.
Three possibilities for a virtual zero-point are now shown:

= Virtual Ground 1C
Split power supply
- Use of the current source

Virtual (iround 1€

With the "Phase Splitter” TLE2426 a common reference is built which lies exaetly in the
middle of the voltage SV LAl signed input voltages are conneeted (o this virtual ground
with their reference potential (0V). The virtual ground voltage (at AD) is measured al
regular time intervals and the measured ADC value is stored and subtracted from the
measured signal (at A1), This gives a signed result for the input A1 The Virtual Ground
method is used with the electronie eleetricity meter shown in figure 1.7.

w5y |SVee

Al

! 25V
O l '''''''' - ] A0
& MSP430
TLE2426
ov

T 1 AGND

Vss Vee
[
ov +5V
Figure 2.3: Virtual Ground IC for Level Shifting
NOTE

The ADC definitions given in the next example are valid for all ADC ex-
amples which follow. They are in accordance with the "MSP430 [Family
User's Guide Preliminary Specification”.

EXAMPLE: The virtual ground voltage at A0 is measured and stored in VIRTGR. The
value of VIRTGR is subtracted from the ADC value measured at input At: this gives the
signed value for the A1 input.

®i TEXAS INSTRUMENTS 3
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HAPDZAPE DEFINITIONS FOP THE ANALOG-

LI CEQU 0110h ; INPUT REGISTEF
AEIT L EQU 0112zh ;0 RNALOSG INPUT
AT LEOU G114h ; RDC CONTPOL FEGISTER
[ CEQU 01lh ; CONVERSION START
JFEF .EQU 02h ; 0O: EZAT. PEFEPRENCE 1. e
CEQU 00h ; INPUT A0
L EQU 04h ; INPUT Al
CEQU 08h ; INPUT AZ
[N . EQU 00h ; CURFENT SOURCE TO AO
( . EQU 40h ; CURPENT SOURCE TO Al
[ L EQU 100h ; CURRENT DSOURCE OFF
COON L EQU 000h ; Current Source on
RNGA L EQU 00h ; RANGE OSELE (0
RHOGE CROU 200h ; BANG (0.25
PG L EOQU 400h ; PANGE (0.5
FNGD Lo 600h ; RANGE OF CT D (075,
FENGAUTO L EQU 800h ; 1: RANGE SELECTED [\UIUI"/«.I [CALLY
Ph L BOU 1000h ;L ADC POWERED DOWN
ADAT L EQU 0118h ; ADC Data Regicter (12 or 14 -bit)
[FG2 L BEQU 03h ; INTERRUPT FLAG REGISTEFR
ADIFG . EQU 04h ; ADC "EOC" Bit (IFG2.Z2)
L BEQU 01h ; Interrupt Enable Register
S EQU 0O2h : ADC interrupt enable bit
VIRTGR . EQU R4 ; Virtual Ground ADC value

MEASURE VIRTUAL GROUND INPUT A0 AND STORE VALUE FOR REFERENCE

MOV HRNGAUTO+CSOFF+AQ+VREF+CS, &ACTL
LG101 BIT.B HADIFG, & TFG2 ; CONVERSION COMPLETED?
J7 L5101 . IF Z=1: NO
MOV &ADAT, VIRTGR ; STORE A0 14 -bit VALUE
; MEASURE INPUT Al (0 ...03FFFh) AND COMPUTE SIGNED VALUE
; (02000h ...O0lFFFh) .
MOV #RNGAUTO+CSOFF+AL +VREF+CS, &ACTL
L5102 BPIT.B #ADIFG, ATFG2 ; CONVERSION COMPLETED?
Jz L$102 ; IF Z=1: NO
MOV &ADAT, RS ; READ ADC VALUE FOR Al
SUB VIRTGR, RS ; RS CONTAINS SIGNED ADC VALUE

Split Power Supply

With two power supplies, for example +2.5 V and -2.5 V. a potential in the middle of the
ADC range of the MSP430 ean be ereated. All signed input voltages are connected to this
voltage with their reference potential (0 V). The mid range voltage (at A0) is measured at
regular time intervals and the measured ADC value is stored and subtracted from the
measured signal (at A1), This gives a signed result for the input At The Split Power
Supply method is used with the Eleetronic Eleetrieity Meters shown in Figures 1.4 and
4.0,
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J—
+256V
- SVee
Al
2V W2V
ov A0
MSP430
25V
AGND
Vss Vee
25V 125V
Figure 2.1: Split Power Supply for Level Shifting

The same software can be used as shown with the Virtual Ground 1¢.
Use of the Current Souree

With the current source a \'nllu;:\- which is partially or completely below the AGND po-
tential can be shifted to the middle of the usable ADC range of the MSP430. This is ac-
complished by a resistor R whose voltage drop shifts the input voltage accordingly. This
method is useful especially if differential measurements are necessary, beeause the ADC
value of the signal's midpoint is not available as casily as with the methods shown proevi-
ously.

The example below shows an input signal vV
nal's midpoint (0V) o the midpoint of the usable ADC range (SV. /1) a current 1 is
used. The necessary current | to shift the input signal is:

1

{ ranging from -1 V to +1 V. To shift the sig-

SV,

o
R, includes the internal resistance of the voltage source V,.
The current I of the current source is defined by:

_025x 5V,
" R

ot

/

Therefore the necessary shift resistor R, is:

R - SV, /14xR,, SR =R,
025x SV,

R TEXAS INSTRUMENTS 15
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The voltage V, at the analog input Al is:

025 xSV,

V., W,

Al 1

+ 1

4

st

Therefore the unknown voltage Vst

025 xSV, N
v.v, -, x — =SV, ( —~
. ’ I.)H If
“erl bl st
— —T SVee
Rext LKJ
1
Vi (lade x Rh)
I A A1
-
Bh fde MSP430
Vi) Vv
— ———————] AGND
Vss Vee
ov 5V

IYigure 2.5: Current Source for Level Shifting

The method deseribed is used with the current path of the MSPA30 El-Meter Demo

Model shown in Figure 1.6,

2.1.2.2 Four-Wire Circuitry for Sensors

A proven method of eliminating the error coming from the voltage drop on the connection
lines {o the sensor is the d4-wire cireuitey: instead of 2 lines, 4 lines are used. 2 for the

measurement current and 2 for the sensor voltages. These

*)

sensor lines do not carry

current (the input current of the analog inputs is only some nanoamps) which means
that no voltage drop falsifies the measured values. The formula for voltage supply is:

R 4R

sens o

-1
AN

16
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e -
SVee
—{ A1
MSP430
A0
AGND
Vss Vee
ov +hV
Figure 2.6 1-Wire Cireuitry with Voltage Supply

FENAMPLE: The sensor R at A0 and AL is measured and the ADC value of it computed

by the difference of the two results measured at At and AO. The result is to be stored in
RH.

SURE UPPER VALUE OF Rsens AT INPUT Al AND STORE VALUE

MOV #RNGAUTO+CSOFF+Al +VREF + &ACTIL
! BIT.E #ADIFG, & IFGL ; CONVEROSTON COMPLETED?
JZ L5103 ; IF Z2=1: NO

MoV &ADAT, RS ; STORE Al VALUE

MEASURE INPUT A0 AND COMPUTE ADC VALUE OF Rsens

MoV P OFF+ A0+ VREF+ 00, 4ACTL
BIT.B  #ADIF( ; CONVERGION COMPLETED?
Jz L5104 ; IF Z=1: NO

SUR LBDAT, RO ; PS5 CONTAINSG Ruons ADC VALUE
The next figure shows the more common d-wire circuitry with Cuarrent Supply:

_AVXR,

NS O

n
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The same software as shown hefore can be used for this hardware too.

Rsens MSP430
AO
R2
- B AGND
Vss Vee
ov +HV

Iigure 2.7: 4-Wire Circuitry with Current Supply

2.1.2.3 Referencing with Reference Resistors

A system thal uses sensors normally needs to be calibrated, due to olerances of the sen-

sors themselves and of the ADC

A way to omit this costly calibration procedure is to

make use of reference resistors. Two different methods can be used, depending on the

{ype of sensor:

1. Platinum sensors: these are sensors with a precisely known temperature-resistance
characteristic. Precision resistors are used with the sensor values of the tempera-

tures at the two limits of the range.

2. Other sensors: nearly all other sensors have insufficiently close tolerances. This
makes it necessary to group sensors with similar characteristies, and to seleet the two
reference resistors aceording to the upper and lower limits of these groups.

I the two reference resistors have preeisely the values of the sensors at the range limits
(or at other well-defined points) then all tolerances are eliminated during caleulation.
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Svee
Ri

A0
Al
A2
A3

e

MSP430

— AGND
Rrett Rsenst Rsens? Rret2 | ves  vee

ov 15V

Iigure 2.8: Referencing with Precision Resistors

The nominal formulas given in the previous seetion need to be changed if offset and slope
are considered. The ADC value N for a given resistor R_is now:

A, x 2" x Slope + Offset

crl

With two known resistors R, and R, it is possible to compute slope and offset and (o
get the values of unknown resistors exactly. The resull of the solved equations gives:

N -V
/’)/ - . ' /,/h X(/{u/;' - lf/r/])+l')1:/,'
‘\/:/: 7‘\///1
with: N, ADC conversion result for R,
N ADC conversion result for R,
A ADC conversion result for R,

R, Resistance of R,
Resistance of R,

As shown only known or measurable values are needed for the computation of R, from
\,. Slope and offset of the ADC disappear completely.

2.1.2.4 Interrupt Handling

The ADC software examples shown above all use polling techniques for the cheek of the
conversion completion. This takes up computing power which can be used otherwise if
interrupt techniques are used.

EXAMPLE: Analog input A0 (without Current Source) and A1 (with Current Source) are
measured alternately. The measured 14-bit results are stored in address MEASO for A0
and MEAST1 for A1. The background software uses these measured values and sets them
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o OFFFFh after use. The time interval between two measurements is defined by the S-bit
timer: every timer interrupt starts a new conversion for the prepared analog input.

HAFDVIARE DEFINITIONS SEE lst ADC EZAMPLE

; ANALOG INPUT A Al

; CURRENT SOURCE OFF on

; PESULT TO MEASO MEAS]
; RANGE SELECTION AUTO AUTO
; REFERENCE syee s

INITTALIZATION PART FOR THE ADC:

MOV #RNGAUTO+COOFF+AO+VRER, &ACTL
MOV. B #ADIE, &6 TEZ ; ENABLE ADC INTERPUPT
MOV #OFFh- 3, &AEN ; ONLY A0 AND Al ANALOG INPUTE

; INITIALIZE OTHER MODULE!

; ADC INTERRUPT HANDLER: A0 AND Al ARE MEASURED ALTERNATIVELY
The next measurement 1o prepared but not started.

A INT BIT #A1, &ACTL ; Al RESULT IN ADAT?
JNZ ADI ;o YES
MOV &ADAT , MEASO ; A0 VALUE 15 ACTUAL
MOV #RNGAUTO+CSONTAL+VRER, &ACTL ; Al NEXT MEAS.
RETT

ADI MOV &ADAT , MEAS | ; Al VALUE
MOV #RNGAUTO+CSOFF+AQ+VREF, &ACTL ; A0 NEXT MEAS.
RETI

;B blt TIMER INTERRUPT HANDLER: THE ADC X ON 15 STARTED

FOR THE PREPARED ADC INPUT

TEBINT BIS #CS, &ACTL ; START CONVERSION for the ADC
RETI
CSECT “INT _VECO", OFFEAh; INTERRUPT VECTORS
.WORD AD _INT ; ADC INTERRUPT VECTOR;
SECT "INT _VECLl",OFFF8h
.WORD T8BINT ; 8-bit TIMER INTERRUPT VECTOR

2.1.2.5 Enlargement to 16-bit Mode

With the use of two additional output pins (I/O-ports or TP.X) the 14-bit ADC may be en-
larged to 16 bits. The prineiple is simple: the resistor R, of the Current Source is modi-
ficd by the paralleling of two additional resistors. These resistors have values that
represent one half and one quarter of one ADC-step. Due to the fact that these fractions
of a step are accurate only at one point of the ADC-range. this enlargement gives only
better resolution, not better acceuracy. To get the 16-bit result, four measurements are
- one for every combination of the two additional resistors. If these four meas-
urements are added together, a 16-bit result is reached. The following figure shows this.

neeessal
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ADC Value
XXXX+ 1 P
XXXX |7
00000h —— ADC Input Voltage
0 Vo Vi v 'R}
Figure 2.8a: Dividing of an ADC-Step into four Steps

The next table shows the different results of these four measurements depending on the
four possible input voltages V, to V', inside of one ADC-step: the table refers to the hard-
ware shown in figure 2.8b.

e —

Input Measurem. 1 Measurem. 2 Measurem. 3 Measurem. 4 Mean Value
Voltage Tp.1 Hi-Z TP.1 Hi-Z TP.1 HiOut  TP.1 HiOut  (Binary)
TP.0 Hi-Z TP.OHiOut  TP.0 Hi-Z TP.0 Hi Out
Vo XXXX XXXX XXXX XXXX XXXX.00
V1 XXXX XXXX XXXX XXXX+1 XXXX.01
V2 XXXX XXXX XXXX+1 XXXX+1 XXXX. 10
V3 XXXX XXXX+1 XXXX+1 XXXX+1 XXXX. 11
Rext
S TPO
I TP 1
TPx SVee
R15
Ri
R14 A1
MSP430C32x
Rsens
AGND

Vss Vee

Fo

ov +5V

Figure 2.8b: Hardware for a 16-bit ADC
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The values for the resistors Ry, and R, are:

20250 R, 2kt

3 -
1 n
with: R, Parallel resistor to R
k... Value of sensor at point of best fit
n IFraction of ADC step (0.25 or (1.5)

FEXAMPLES: With the hardware shown in figure 2.8b a 16-bit measurement is made. The
result is placed in R, The software may be written with a loop too. The software as-
sumes ascending order for the two TP outputs.

TPD . EQU 04Eh ;o Address data reglster
TPE L EQU 04Fh ; Address of enable register
1P0 L EQU ] ; Bit addre: of TP.O
TP L BOU 2 ; Bit address of TP. I
BIC.B #TPL+TPO, &TPE ; TP.0 and TP.1 to H1-2
BIS.B #TPL+TPO, &TPD ; Set TPD.O and TPD.l to Hi
CALL #MEASAL ; Measure with R14 = RILS Hi -2
MOV &ADAT, RS ;14 -bit value to result
ADD. B #TPO, &TPE 5 Set R1IS5 to Hi-Out
CALL #MEASAL ; Measure
ADD &ADAT, RS s Add 14-bit value to result
ADD.B #TPO, &TPE ; Set R14 to Hi-Out, RIS to Hi-%Z
CALL #MEASAL ; Measure
ADD &ADAT, RS ; Add 14-bit value to result
ADD. B #TPO, &TPE ; Set R14 and R15 to Hi-Out
CALL #MEASAL ; Measure
ADD &ADAT, RS ; Add l4-bit value to result
BIC.B #TP1+TPO, &TPE ; 16-bit result in RS, TP.n off

Measurement Subroutine for input Al

MEASAL MOV #RNGAUTO+CSOFF+AL+VREF+CS, &ACTL
L5101 BIT.B #ADIFG, &TFG2 ; CONVERSION COMPLETED?
JZ L$101L ; IF Z=1: NO
RET ; Return with result in ADAT
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2.1.3 The 14-bit Analog-to-Digital Converter used in 12-bit Mode

This mode is used if the range of the input voltage is known. If. for example, a tempera-
ture sensor is used whose signal range always fits into one range (for example range ),
then the 12-bit mode is the right selection. The measurement time with MCLK = 1 Mbz is
only 96 us compared with 132 us if the auto ranging mode is used. The following figure

shows the four ranges compared to SV .

ADC Value
Overtlow
OFFFh
0COo0h
A B < 0
0800n
0400h
Underflow
000004 - f — t Input .
0 025 SVee 05 SVee 075 SVee SVee  Voltage Vax

Iligure 2.9: The four Single ADC Ranges

NOTE

The ADC results 0000H and OFFFFh mean underflow and overflow: the
voltage at the measured analog input is below or above the limits of the

addressed

I'he next figure shows how one of the ranges appears:

ADC Value
OFFFh
0800h
Range N-1 Range N Range N+1
Input
0000h T Voltage
0 (N-1)x0.25 SVce Nx0.25 SVce SVee

Figure 2.10: Single ADC Range

® TEXAS INSTRUMENTS
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The possible ways to connect sensors to the MSP430 are the same as shown for the 14-bit
ADC:

—

— —_ SV [ e S
s
Ry Rext } |
6
Ri
Vin —
° SN Az A
i ) C—
B as LT Rsenss A Rsenss

Rsens?2 Rsenst - —
A7
R2 KW MSP430 J

- l' L FAGND  AGND p—— L e

Vss Vee

I
..... o I . ov +HV ]
IYigure 2.11: Possible Sensor Connections to the MSP430 for 12-bit ADC

The nominal ADC formulas for the 12-bit conversion are:

Vi —nx025xV,,
Vi

N
N = x2SV =V nx025)
! ¢ \)]-J

with: N 12-bit result of the ADC conversion
Vi Input voltage at the selected analog input A
Vi Voltage al pin SV, (external reference orinternal V)
n Range constant (n = 0,1,2,3 for ranges AB.C.D)

The ADC formula for a resistor Ry (R
via a resistor R is:

in the above figure) which is connected to V',

senst

n .
» "1{ XV, —nux026xV A\q i
N - LT e X2V R =R X 2’,'
l 4
" A=t

Il the current source is used (as for R, in the above figure), the above equation
changes to:

025x 1’ v
PN R —ix025x ),

A\':—[—{'” -— x 2" = L{’~~Nj><2”
Vo, R,

24 . ®i TEXAS INSTRUMENTS



MSP430 Family The Analog-to-Digital Converters

This gives for the unknown resistor R

Al
N j X I
c)l_ ert

0|
with: R, Resistor between SV pinand R, pin (defines current 1,.,)
R Resistor to be measured (conneeted to A and A\ )

N

2.1.3.1 ADC with signed signals

Only the Current Source method is applicable if signed signals have (o be measured:

Normal phase splitter cireuits are not able to shift the virtual ground into the middle
of range A (0,125 SV ) or B (0.375 SV ). as is necessary here.
The split power supply method would need two different voltages to got the zero point

into the middle of range A (0.625 V7 1375 V) or range B (1875 V' /3,125 V)

For signed signals it is necessary to shift the input signal V, to the middle of the range A
.

or B range B (0375 SV ) is used the necessary shift resistor R, is

03T S, x
0.25x S,

I

’ TR

3 !

=1Ox 1,

The unknown voltage V, referred to its zero point in the middle of range n is:

oo,

=<

With the above equations for V', this leads to:

Voo025x 81, —i,+n- %,
‘ 2" R,

2.1.3.2 Interrupt Handling

The software is the same as for the 14-bit conversion. The only difference is the omission
of the RNGAUTO bit during the initialization of ACTL. Instead the desired range should
be included into the initialization part of each measurement.

EXAMPLE: Analog input A0 (without Current Source, always range B, external refer-
ence at pin SV, ) and At (with Current Source, always range A) have to be measured al-
ternately. The measured 12-bit results have to be stored in address MEASO for A0 and
MEAST for Al. The background software uses these measured values and sets them {o
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OFFFFh after use. The time interval between two measurements is defined by the 5-bit
timer: Every timer interrupt starts a new conversion for the prepared analog input.

HARDWARE DEFINITIONS SEE lst ADC EXAMPLE

; ANALOG INPUT A0 Al

; CURRENT SOURCE OFF ON

; RESULT TO MEASO MEAS1
; RANGE B A

; REFERENCE EXTERNAL svcCe

INITIALIZATION PART FOR THE ADC:

MOV #RNGB+CSOFF+AQ, &ACTL
MOV. B #ADIE, &1E2 ; ENABLE ADC INTERRUPT
MOV #O0FFh- 3, &AEN ; ONLY A0 AND Al ANALOG INPUTS

; INITIALIZE OTHER MODULES

; ADC INTERRUPT HANDLER: AQ AND Al ARE MEASURED AL
. The next measurement is prepared but not started

TERNATELY

AD_INT BIT #Al, &ACTL ; Al MEASURED 7
JNZ ADI ; YES
MOV &ADAT , MEASO ; A0 VALUE IS ACTUAL
MOV #RNGA+CSAL+AL+VREF, &ACTL ; Al NEXT MEAS.
RETI
ADI MOV &ADAT, MEAS1 ; Al VALUE
MOV #RNGB+CSOFF+AO, &ACTL ; A0 NEXT MEASUREMENT
RETIL

; 8-bit TIMER INTERRUPT HANDLER: THE ADC CONVERSION IS STARTED
FOR THE addressed ADC INPUT

T8BINT BIS #CS, &ACTL ; START CONVERSION
RETI
.SECT "INT_VECT",OFFEAh; INTERRUPT VECTORS
.WORD AD_INT ; ADC INTERRUPT VECTOR;
.SECT "INT_VECT", OFFF8h
.WORD T8BINT ; 8-bit TIMER INTERRUPT VECTOR

2.1.4 Connection of long Sensor Lines

If the distance from the MSP430 to the sensor is long (>30 em) then it is recommended to
use a shielded cable between the microcomputer and the sensor. This is to avoid spikes
at the ADC that will cause measurement errors and also gives protection to the ADC in-
put. Figure 2.12 shows this schematic at the left hand side. The same way Four-Wire-
Cireuitry may be connected to the MSP430.

If a sereened cable cannot be used the schematic at the right hand side of Figure 2.12
should be used: the AGND in parallel to the signal line gives a relative good screening.
Twisting of the two lines increases the protection.

To protect the measurement against spikes, hum and other unwanted noise see chapter
"Signal Averaging and Noise Cancellation”. This chapter shows possibilities for the
minimization of these influences by software.
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SVce SVee

Long Cable

Long Cavle

Rsens Al A2

MSP43032x
Rsens

Sheld No Shield. drilled wires
AGND AGND
Vss Vee
ov +5V
Figure 2.12: Sensor Connecetion via Long Cable with Voltage Supply

2.1.5 Grounding

The correet grounding is very important for ADCs with high resolution. There are some
basic rules that need to be observed.

Rules for common analog and digital ground pins if only the V pin exists as a common
reference point.

1. Use of a separate analog and digital ground plane wherever possible: no thin connee-
tions from battery to pin V,

2. The V_ pin is a star point for all ground connections

3. Battery and capacitor are connected together at this star point

4. No common path of the analog and the digital signals is allowed

- SVee
Rv Rext
R
Al
Rsens2 Rsenst AD
MSP430C201
Battery Beplacement Vss Vee
Battery Replacement
To other parts
-5V Vee
]‘ r;‘ a o /\f Y
Vss
AGND

Figure 2.13: 14-bit ADC Grounding (Common Supply Connections)
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Figure 2.13 shows also the use of a mains driven power supply: its V.. and \V__ connec-
tions arc connected where the battery is connected normally. The capacitor across the
MSP430 supply pins may be smaller if a power supply is used: this is due to the low in-
ternal resistance of a power supply compared to the internal resistance of a battery.

Rules for separated analog and digital ground pins: AV, and DV, pins are existent

1. Use of a separate analog and digital ground plane wherever possible: no thin connec-
tions from battery to pin DV and AV

2. The AV, pin is a star point for all analog ground connections. The DV pin is a star
point for all digital ground connections.

3. Battery and storage capacitor are conneeted close together (this capacitor is needed
for batteries with a relatively high internal resistance). From this capacitor two dif-
ferent paths go to the analog and the digital supply pins. Two small capacitors are
conneeted across the digital (C,) and the analog (C) supply pins. See below,

4. All mentioned points 1 to 3 above are also true for the V. path

5. The AV, and DV, pins must be conneeted together externally. they are not connected
internally. The same is true for the AV and DV, pins.

6. 'The coil 1 is needed only in very difficult cases.

—¢—1 SVce
Rv Rext

R

Al

Rsens2 Rsens1 A0
MSP430C323

AVss AVcc DVss DVec

Ca M1 Cd To other digtal parts

To other analog parts M
ov +3V

AGND

Figure 2.14: 14-bit ADC Grounding (Separate Supply Connections)

2.2 The Universal Timer/Port Module ADC used as ADC

This ADC module is contained in MSP430 versions that do not have the 14-bit ADC. The
function is completely different from the 14-bit ADC: the discharge times t,, for different
resistors are measured and compared.
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-
]

SVcece
Vth
0
> tc [€— tdct - tc e tdc2 —] -
Time
Figure 2.15: Timing for the Universal Timer
with Ay Threshold voltage of the comparator
s Discharge time with the reference resistor R,
(I Discharge time with the sensor R,
t Charge time for the capacitor

The solving of the exponential equation leads to the simple equation below:

LL - ii - /f\”“ = ]{m/ X
R, 1. !

I al

~

e

To get a resolution of n bits, the capacitor C must have a minimum capacity:

_o
>

V
R X X |p - emas
|4

rmin

of
With: f Measurement frequency (ACLK or MCLK) in Hertz
Ry Lowest resistance of sensor or reference resistor in Ohms
Vimas Maximum value for threshold voltage V,, in Volts

EXAMPLE: Use of the Universal Timer Port as an ADC without interrupt. The measured
t,. values of the two sensors R, and R, and the reference resistors R, and R, are stored in
RAM starting at label MSTACK (R, location). If an error occurs, 0FFFFh is written to the
RAM location.
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MSP430

Frable Conl - TRING  TPDS TPES TPG4 TPE4 TPLY TPES TROZ TPE2 TPLY TPE TPLT TPEY

IS akahs

CIN Ttps  T1pa 3 L TP2 | TPA PO
R3 R2 R1 RO
c
Tov

Iligure 2.16: Schematic of Example
; DEFINITION PART FOR THE UT/PM ADC
TPCTL LEQU 04Bh ; TIMER PORT CONTROL
TPOSELO L EQU 040h ; TPSSEL. O
ENE CEQU 020h ; CONTROLS ENl OF TPCNTL

.EQU 010h ; AS ENB

_EQU 008h ; ENABLE INPUT FOR TPCNT!

.EQU 004h ; RIPPLE CARRY TPCNT2

.EQU 001h ; EN1l FLAG BIT
TPCNTL . EQU 04ch ; LO 8-bit COUNTER/TIMER
TPCNT2 . EQU 04Dh ; HI 8-bit COUNTER/TIMER
TPD _EQU 04Eh ; DATA REGISTER
Bl6 _EQU 080h ; 0: SEPARATE TIMERS 1: 16-bit TIMER
CPON _EQU 040h ; 0: COMP OFF 1: COMP ON
TPDMAX . EQU 008h ; BIT POSITION OUTPUT TPD.MAX
TPE .EQU 04Fh ; DATA ENABLE REGISTER
MSTACK .EQU 0240h ; Result stack lst word

NN .EQU 0l1lh ; TPCNT2 VALUE FOR CHARGING OF C

; MEASUREMENT SUBROUTINE WITHOUT INTERRUPT. TPD.4 AND TPD.5
; ARE NOT USED AND THEREFORE OVERWRITTEN

; INITIALIZATION: STACK INDEX <- 0, START WITH TPD.3

l6-bit TIMER, MCLK, CIN ENABLES COUNTING

; Call: CALL #MEASURE

; Return: Results for TP.3 to TP.0 in MSTACK to MSTACK+6

; Result OFFFFh 1if error

MEASURE PUSH.B #TPDMAX ; START WITH SENSOR R3 TPD.MAX
CLR RS ; INDEX FOR RESULT STACK

MEASLOP MOV.B # (TPSSELO*3)+ENA, &TPCTL ; Reset flags

; CAPACITOR C IS CHARGED UP FOR > 5 TAU. N-1 OUTPUTS ARE USED

MOV.B #B16+TPDMAX-1, &TPD ; SELECT CHARGE OUTPUTS
MOV.B #TPDMAX -1, &TPE ; ENABLE CHARGE OUTPUTS
MOV.B #NN, &TPCNT2 ; LOAD NEG. CHARGE TIME
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MLPO BIT.B #RCIFG, &TPCTL ;
JZ MLPO
MOV.B @SP,&TPE
CLR.B &TPCNT2

SWITCH ALL INTERRUPTS

QFF,

CHARGE TIME ELAPSED?
; NO CONTINUE WAITING

ENABLE ONLY ACTUAL SENSOR

; CLEAR HI BYTE TIMER

TO ALLOW NON-INTERRUPTED START

OF TIMER AND CAPACITY DISCHARGE

DINT ALLOW NEXT 2 INSTRUCTIONS
CLR.B &TPCNT1 ; CLEAR LO BYTE TIMER
BIC.B @sP, &TPD ;7 SWITCH ACTUAL SENSOR TO LO
MOV.B # (TPSSELO*3) +ENA+ENB, &TPCTL Reset tlags
EINT COMMON START TOOK PLACE

Wait until ECC (ENl = 1) or overflow error (RC2FG = 1)

MLP1 BIT.B #RC2FG, &TPCTL 5 Overflow (broken sensor)?

JNZ MERR ; Yes, go to error handling
BIT.B #EN1, &TPCTL CIN ~ Ucomp?
JINZ MLP1 NO, WAIT

End of Conversion:

Store 2 x 8 bit result on MSTACK

Address next sensor, if no one addressed: End reached

MOV.B &TPCNT1, MSTACK (R5) ; STORE RESULT ON STACK
MOV.B &TPCNT2 ,MSTACK+1 (R5) HI BYTE

L5301 INCD RS ; ADDRESS NEXT WORD
RRA.B @sp ; NEXT OUTPUT TPD.x
JINC MEASLOP ; IF C=1: FINISHED
INCD SP ; HOUSEKEEPING: TPDMAX OFF STACK
RET

ERROR HANDLING:

ONLY OVERFLOW POSSIBLE

(BROKEN SENSOR ?)

OFFFFh IS WRITTEN FOR RESULT AND SUBROUTINE CONTINUED

MERR MOV

JMP L$301

2.2.1 Interrupt Handling

#0FFFFh, MSTACK (R5) ;

Overflow

EXAMPLE: Use of the Universal Timer Port as an ADC with interrupt. Everything else is

the same as the previous example.

DEFINITION PART FOR THE UT/PM ADC

TPCTL

.EQU 04Bh ;
TPSSELO . EQU 040h ;
ENB .EQU 020h ;
ENA .EQU 010h ;
EN1 .EQU 008h ;
RC2FG .EQU 004h ;
EN1FG .EQU 001h ;
TPCNT1  .EQU 04Ch ;
TPCNT2  .EQU 04Dh ;
TPD .EQU 04Eh ;
B16 .EQU 080h ;

_EQU 040h ;

CPON

;

TIMER PORT CONTROL REGISTER
TPSSEL. 0O

CONTROLS EN1 OF TPCNT1

AS ENB

ENABLE INPUT FOR TPCNT1
RIPPLE CARRY TPCNT2

EN1 FLAG BIT

LO 8-bit COUNTER/TIMER
HI 8-bit COUNTER/TIMER

DATA REGISTER
0: SEPARATE TIMERS
0: COMP OFF 1:

1: 16-bit TIMER
COMP ON
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TPE .EQU 04Fh ; DATA ENABLE REGISTER
.BS3S MSTACK, 8 ; Result stack lst word (8 bytecs)
.BSS ADCST,1 ; Status byte
b'JN .EQU 0llh ; TPCNTZ2 VALUE FOR CHARGING OF C
IFG2 .EQU 003h ; Interrupt flag register 2
TPIFG .EQU 008h ; ADC interrupt flag
iE2 CEQU 001h ; Interrupt enable register 2
ADIE CEQU 004h ; ADC interrupt enable bit
PO EQU 0lh ; TP.O Bit address
TP1 .EQU 02h ; TP.1 Bit address
TP2 .EQU 04h ; TP.2 Bit address

TP3 . EQU 08h ; TP.3 Bit address

; MEASUREMENT SUBROUTINE WITH INTERRUPT. TPD.4 AND TPD.S
; ARE NOT USED AND THEREFORE OVERWRITTEN

; Return: Results for TP.3 to TP.0 in MSTACK to MSTACK+H
; ADCST = 10: Results ok
; ADCST = 1l1: Error

; INITIALIZATION: ADCST<- 1, 16-bit TIMER, MCLK
; CIN ENABLES COUNTING

; ADCST is set: causes interrupt for charge initialization

MEASINIT MOV.B #1,ADCST ; Status to Init. of charge

BIS.B #TPIFG, &1FG2 ; Causes interrupt for init.
BIS.B #ADIE, &TE2 ; Enable ADC interrupt

EINT ; GIE on
L. ; Continue main program

; ADC handler. ADCST contains status

ADCINT PUSH R6

; Working register
MOV.B ADCST,R6 ; ADC status byte
MOV.B ADCIT (R6) ,R6 ; Rel. address of current handler
ADD R6, PC ; Branch to handler
ADCIT .BYTE ADCSTO-ADCIT ; StatusO: ADC inactive

.BYTE ADCST1-ADCIT ; 1: Init 1lst charge
.BYTE ADCST2-ADCIT ; 2: Charge, init lst measurement
.BYTE ADCST3-ADCIT ; 3: lst meas., init 2nd charge
.BYTE ADCST4-ADCIT ; 4: Charge, init 2nd measurement
.BYTE ADCST3-ADCIT ; 5: 2nd meas., init 3rd charge
.BYTE ADCST6-ADCIT ; 6: Charge, init 3rd measurement
.BYTE ADCST3-ADCIT ; 7: 3rd meas., init 4th charge
.BYTE ADCST8-ADCIT ; 8: Charge, init 4th measurement
.BYTE ADCST3-ADCIT ; 9: 4th meas.
.BYTE ADCSTO-ADCIT 10: Completed, no error

11: Error occured

ADCERR .BYTE ADCSTO-ADCIT
; Measurement completed? EN1FG = 1: Yes, ok
: RC2fg = 1: Overflow by broken sensor

ADCST3 MOV.B ADCST,R6 ; Status x 2

RLA R6 ; For result addressing

BIT.B #EN1FG, &TPCTL ; EN1 or RCZFG?

JINZ L$401

MOV.B #ADCERR-ADCIT-1,ADCST ; Error code-l to status
JMP ADCCMPL ; Switch off ADC
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L$401 MOV.B &TPCNT1, MSTACK-6 (R6) ; STORE RESULT ON STACK

MOV.B &TPCNT2, MSTACK-5 (R6) ; HI BYTE

; It last measurement (ADCST = 9): Switch off ADC

CMP.B #9,ADCST

JNE ADCST1 ; ADCST # 9: Init next meas.
ADUCMPL CLR.B &TPE ; Outputs disabled

CLR.B &TPD ; ADC off, outputs lo

JMP L$402 ; ADCST =10 atter return

CAPACITOR C CHARGE-UP FOR > 5 TAU. TP.2 to TP.0 ARE USED

ADCST1 MOV.B # (TPSSELO*3) +ENB+ENA, & TPCTL ; Reset flags
MOV.B #BLE+CPON+TPO+TPL1+TP2,&TPD ; SELECT OUTPUTS
MOV. B #TPO+TPL+TP2, &«TPE; ENABLE CHARGE OUTPUTS
MOV.B #NN, &TPCNT2 ; LOAD NEG. CHARGE TIME
JMP L$402

; Charge 1s made, init measurement

ADCSTS8 MOV .B #TPO, &TPE ; Enable TP.O

BIC.B #TPO, &«TPD ; Set TP.O low
JMP L$403
ADCSTH MOV .B #TP1, &TPE ; Enable TP.1
BIC.B #TP1,&TPD ; Set TP.1 low
JMP L$403
ADCST4 MOV.B #TP2, &TPE ; Enable TP.2
BIC.R #TP2,&TPD ; Set TP.2 low
JMP L$403
ADCSTZ MOV.B #TP3, &TPE ; Enable TP.3
BIC.B #TP3, &TPD ; Set TP.3 low
L$403 CLR.B &TPCNT2 ; CLEAR HI BYTE TIMER
CLR.B &TPCNT1 ; CLEAR LO BYTE TIMER
L$402 INC RS ; ADCST + 1
ADCSTO BIC.B #TPIFG, &IFG2 ; Reset ADC flag
BIC.B #RC2FG+EN1FG, &TPCTL ; Reset interrupt flags
POP R6 ; Restore R6
RETI
.SECT "INT_VECT",OFFEAh; INTERRUPT VECTORS
.WORD ADCINT ; ADC INTERRUPT VECTOR;

2.2.2 Connection of long Sensor Lines

If the distance from the MSP430C31x to the sensor is long (>30 cm) then it is recom-
mended to use a shielded lead between the microcomputer and the sensor. This is to give
protection to the ADC input. Figure 2.17 shows the schematic. The protection resistors
R, need to be included into the calculation: they are connected in series with the sensor.
To protect the measurement against spikes, hum and other unwanted noise sec chapter
"Signal Averaging": here some possibilities for the minimization of these influences are
shown.
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Depending on the actual application the omission of the two resistors R, , can give best
results: the relatively low internal resistance of the TP.x output and the capacitor alone
may get this.

If a shiclded cable is not possible then a twisted cable or a three-core cable should be
used: the unused wire is to be connected to Vi as shown in figure 2.17 with R .

Shield

Rsens1

! Hro

Shield MSP430C31x

Rsens2 .
S P2
(VA 3rd Line
Vss Vee

No shield, dnlled wires

ov +5V

IFigure 2.17: Connection of long Sensor Lines

2.2.3 Grounding

The correet grounding is very important if ADCs with high resolution are used. There are
some basic rules that need to be observed.
With the MSP430C31x only the Vi pin exists as a common reference point.

1. Use of separate analog and digital ground planes wherever possible: no thin connec-
tions from battery to pin Vg

2. The Vg pin is a star point for all V connections

3. Battery and capacitor are connected together at this star point

1. No common path of analog and digital signals
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—

Rret
TPDO
Rsens1
TPD 1
MSP430C31x
Rsens2
Battery Replacement TPD 2

Wdew- [

Vss -
Vss Vee
To other parts — To other parts.
— [} .
ov 13V

AGND

Iligure 2.18: Grounding for the Universal Timer/Port ADC

Figure 2,18 shows also the use of a mains driven power supply: its V. and V_ connee-
tions are conneeted where the battery is conneeted normally. The capacitor across the
MSP430 pins may be smaller if a power supply is used.
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3 HARDWARE APPLICATIONS

3.1 1/0-Port Usage

The eight 1/O's of Port0 have a very useful feature: each one has interrupt capability for
the leading and for the trailing edge of an input signal. This has the following advan-

tages:

More than one interrupt input

1.

2. Bight external events can wake-up from Low Power Modes 3 or 4

3. No glue logic necessary for most applications: all inputs can be observed without the
need of gates conneeting them to a single interrupt input.

4. Wake-up possible out of any input state (high or low)

Nal

3.1.1 General Usage

. Due to the edge-triggering of the interrupts no external switeh-off logic is necessary
for input signals that are of long duration.

Six peripheral registers control the activities of the 1/0O-port:

Register Usage
Input Register Signals at 1/0-pins
Ouiput Register Content of output buffer

Dircetion Register 0z Input 1: Output

Interrupt Flags 0: No interrupt pending
1: Interrupt pending

Interrupt Edges 0: Low to high causes interrupt
1: High to low causes interrupt

Interrupt Enable (0: Disabled 1: Enabled

State after Reset

Reset to input direction
Reset

Unchanged

Reset

The interrupt vectors, flags and peripheral addresses of I/0-port 0 are:

Name Mnemonic Address Contents Vector
Input Register POIN 010h -
Output Register POOUT 011h
Direction Register  PODIR 012h -
Interrupt Flags POFLG 013h POFLG.7 ... POFLG.2 OFFEOh
IFG1.3 002h PO.1IFG OFFF8h
IFG1.2 002h P0.0IFG OFFFAh
Interrupt Edges POIES 014h
Interrupt Enable POIE 015h POIE.7 ...POIE.2
[E1.3 000h PO.11E
[E1.2 000h P0.0IE
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EXAMPLE: The VO-ports P0.0 to P0.3 are used for input only. P01 to P0.7 are outputs,
initially at low level. The conditions are:

P0.0 Every change is counted
Po.1 Any Hi-Lo change is counted
Po.2 Any Lo-Hi change is counted
P03 Every change is counted

RAM definitions

.BSS PO_OCNT, 2 ; Counter for P0.0O
.BSS PO_ICNT, 2 ; Counter for PO.1
.BSS PO_2CNT, 2 ; Counter for P0.2
.BSS PO_3CNT, 2 ; Counter for P0O.3

; Initialization for PortQ

MOV.B #000h, «POOUT ; Output register low
MOV.B #0F0Oh, &«PODIR ; P0.4 to PO.7 outputs
MOV.B #00Bh, &«POIES ; P0O.0 to PO.3 Hi-Lo, P0.2 Lo-Hi
MOV.R #00Ch, &«POIE ; P0.2 to PO.3 interrupt enable
BIS.B #00Ch, &IEL ; PO.0 to PO.1 interrupt enable

Interrupt handler for P0.0. Every change is counted

PO_OHAN INC PO_OCNT ; Flag is reset automatically

XOR.B #1,&P0OIES ; Change edge select
RETI

Interrupt handler for P0O.1. Any Hi-Lo change is counted

PO_1HAN INC PO_1CNT ; Flag is reset automatically
RETI

Interrupt handler f[or PO.2Z and PO.3
The flags of all read transitions are reset. Transitions

; occuring during the interrupt routine cause interrupt after
; the RETI

PO_23HAN PUSH RS ; Save RS

MOV.B &POFLG, RS ; Copy interrupt flags
BIC.B RS, &POFLG ; Reset read flags
BIT #4,R5 ; P0.2 flag to carry
ADC PO_2CNT ; Add carry to counter
BIT #8,R5 ; P0.3 flag to carry
JNC L$304
INC PO_3CNT ; P0.3 changed
XOR.B #8,POIES ; Change edge select
L5304 POP R5 ; Restore RS
RETI
.SECT "INT_VECT", OFFF8h
.WORD PO_1HAN ; PO.1 INTERRUPT VECTOR;
.WORD PO_OHAN ; PO.0 INTERRUPT VECTOR;
.SECT "INT_VECT1",OFFEQOh
.WORD PO_23HAN ; P0.2/7 INTERRUPT VECTOR
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3.1.2 Zero Crossing Detection

With the external components shown in figure 3.1 it is possible to build a zero crossing
input for the MSP430. The components shown are designed for an external voltage
Vv =230 V. With a circuit capacitance (wiring, diodes) of 30 pI as shown. the follow-

iné‘kluluys will occur (all values for V =230V, {f = 50Hz V,, = +5V) (timing is in

mains
US):
Vee -
30pF | Veortx
Vmains e to Portx
Protection Diodes
°
GND GND
MSP430
IMigure 3.2: MSP430 Input for Zero-Crossing
Voltage Vmains Vmains
I Vportx
Vportx
VT+max /
VT+min \ VT-max
VT-min
0
L
0p Ol Time
— Sdp et — —> len [—
05p D 30p
Figure 3.1: Timing for the Zero Crossing

Delay caused by RC (1 MQ x 30 pI): 0.54° or 30 ps. Same value for leading and trailing
cdges.

Delay caused by input thresholds: Leading edge: 24 to 35 us. (V. = 2.3t0 3.4 V)
Trailing edge: 14 to 24 us. (V, = 23to 1.4 V)

The resulting delays ave: Leading edge: 54 to 65 ps.
Trailing edge: 6 to 16 us.
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These small deviations do not play a role for 50 Hz or 60 Hz phase control applications
with TRIAC's. If other input conditions than 230 V and 50 Hz are used then the resulting
delays can be calculated with the following formulas:

t, = lj s [/([](;;"(UI) U/ x©oxcosot
With [ Delay time caused by input threshold
V. Threshold voltage of input
S, Slope of input voltage
® Angular frequencey 2 nf
U Input voltage U,

Fort = 0 (zero crossing time) the above equation becomes:
V V
— ! —_ !
t,=—= —=
Uxoxt [[xw

3.1.3 Output Buffering

The outputs of the MSP430 (P0.x. Ox) have nominal internal resistances depending on
the supply voltage V|

= A max. 333 Q (AV = 0.4 Vmax. @ 1.2 mA)
T = oV max. 266 Q (AV = 0.4V max. (@ 1.5 mA)

These internal resistances are non-linear and are valid only for small output currents
(see above). If larger currents are drawn then saturation effects will limit the output cur-
rent.

These outputs are intended for driving digital inputs and gates and they normally have
too high impedance for other applications such as the driving of relays, lines ete. If out-
put currents greater than the above mentioned ones are needed then output buffering is
necessary. The following figure shows some possibilitics. The resistors shown for the
limitation of the MSP430 output current are minimum values. The design is made for
Vo =5 Vivalues in brackets are for V| : = 3 V.
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+5V
ﬁ[] hSZkHz
«—— lc=15mAxPB)  (ic=12mAxB)
SVee
2 7k (1.6k)
P0.x,0y
MSP430 v
8.2k (3.3) «— Ic = 350mA
Posoy ] P
ULN2001A
PO .x,0y v——D———v
«—— lc =200mA
ULN2003A
45V Mains
3.0k (2k)
PO x,0y
TRIAC
Vss Vdd
ov 15V ov ov
Ifigure 3.3: Output Buffering

3.1.4 MSP4

30C31x i/0s

If the Universal Timer/Counter Port is not used for analog-to-digital conversion. or is
only partially used, then the unused pins are available as outputs that may be switched
{o HI-7. The Universal Timer/Counter Port may be used in three different modes:

- Two 8-bit timers and 6 output pins
- One 16-bit timer and 6 output pins
— Active analog-to-digital conversion that does not need all I/O-pins

The ports TP.0 to TP.5 are completely independent of the analog-to-digital converter: the
ports not used for the ADC may be set or reset without disturbing the conversion. Which
ports are used for the sensors and reference resistors does not matter.

Power-up resets the data register to zero and switches all ports to HI-Z.
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—
MSP430
Enabie Control - TRING  TPDS TPES TPDA TPE A TPD I TPE 3 TPDY 1PE . TPD YT TPE 1T 1PDO TPE O
l ] T I I | |
CIN TP 5 TP.4 TP.3 TP.2 TP TP.0
Figure 3.1 MSPA30C31x Port

3041 1/Os used with the Analog-to-Digital Converter

The analog-to-digital conversion uses the pins CIN and at least two of the TP.X pins (one
for the reference and one for the sensor to be measured). Therefore up to 4 outputs are
available. It is only possible to use bit instructions (BIS, BIC, XOR) for the modification of
the outputs: this is due to the control bits located in the Data Register TPD and Data [$n-
able Register TPE. The programming of the port is the same as deseribed in the next
section,

NOTE
FFor precise ADC results it is recommended to avoid changes of the ports
during the measurement. The board layout and the physical distance of
the switched port define the influence of the pin CIN. Spikes coming from
the switching of ports can alter the result of a measurement especially if
they occur near to the threshold voltage.

3.1.4.2 1/0s used without ADC

This mode allows 5 outputs with the possibility of being switched to HI-Z (TP.0 to TP.4)
and one L'O-pin (TP.5). Additionally, two S-bit timers or one 16-bit timer are available. If
one of the timers is used, only bit instructions (BIT, BIS, BIC, XOR) are possible for the
manipulation of the port: four control bits of the timers are located within the Data Reg-
ister TPD and Data Enable Register TPE. If MOV instructions are used, all bits are af-
fected.

EXAMPLE: All six ports are used as outputs. The possibilities of the port are shown:

; Definitions for the Counter Port

TPD .EQU 04Eh ; Data Register

TPE .EQU 04Fh ; Data Enable Register 1: output enabled
TPO .EQU 001h ; TP.0 bit address

TP1 .EQU 002h ; TP.1 bit address

TP2 .EQU 004h ; TP.2 bit address

TP3 .EQU 008h ; TP.3 bit address

TP4 .EQU 010h ; TP.4 bit address

TPS .EQU 020h ; TP.5 bit address

; Reset all ports and enable all to outputs
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BIC.B #TPO+TP1+TP2+TP3+TP4+TP5, &TPD ; Data to low
BIS.B #TPO+TP1+TP2+TP3+TP4+TP5, &TPE ; Enable outputs

Toggle TP.0 and TP.4, set TP.5 and TP.2 afterwards

XOR.B #TPO+TP4, &TPD ; Toggle TP.0 and TP.4
BIS.B #TP5+TP2, &TPD ; Set TP.5 and TP.2
Switch TP.1 and TP.3 to HI-Z state

BIC.B #TPL+TP3, &TPE ; HI-Z state for TP.l and TP.3

3.1.5 1/0s used for fast serial Transfer

The combination of hardware and software shown below allows the fastest possible se-
rial transfer with the MSP430 family. The data line needs to be P0.0, for the clock line
any other Port0 line may be used.

POOUT .EQU 0llh ; Port0 Output register
PODIR .EQU 012h ; Port0 Direction register
P00 .EQU 0lh ; Bit address of P0.0
PO1 .EQU 02h ; Bit address of PO.1
MOV DATA, R4 ; lst 16bit data to R4
CALL #SERTIAL_FAST_INIT; lst transfer
MOV DATAL, R4 ; 2nd 16bit data to R4
CALL #SERIAL_FAST ; 2nd transfer
; aso.

; Initialization of the fast serial transfexr

SERIAL_FAST_INIT ; Initialization part

BIC.B #P00+P0O1, &POOUT ; Reset P0.0 and PO.1
BIS.B #P00+P01,&PODIR ; P0.0 and P0.l1 to output dir.

; Part for 2nd and all following transfers

SERIAL_FAST ; Initialization is made

RRC R4 ; LSB to carry 1 cycle
ADDC.B #P01, &POOUT ; Data out, set clock 4 cycles
BIC.B #P00+P01,&POOUT ; Reset data and clock 5 cycles
RRC R4 ; LSB+1 to carry 1 cycle

ADDC.B #P01, &POOUT ; Data out, set clock 4 cycles
BIC.B #P00+P01, &POOUT ; Reset data and clock 5 cycles

...... ; Output all bits the same way

RRC R4 ; MSB to carry 1 cycle
ADDC.B #P01, &POOUT ;. Data out, set clock 4 cycles
BIC.B #P00+P01,&POOUT ; Reset data and clock 5 cycles
RET
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Each bit needs 10 eyeles for the transfer, this results in a maximum Baud rate for the
transfer:

Baud Rate, = i(“L)i

This means if MCLK = 1.024 MHz then the maximum Baud rate is 102.4 kBaud.

ey " “qn Q"

P00 Data _[_-I I'_—I

o p ., 4 L L L

MSP430

Vss Vee
ov +5V
Figure 3.4a: Connections for fast serial Transfer

3.2 Storage of Calibration Constants

Metering devices such as electricity meters, gas meters ete. normally need to store cali-
bration constants (offsets, slopes, limits, addresses, correction factors) for use during
the measurements. Depending on the voltage supply (mains, battery) it is necessary or
possible to have them stored in the on-chip RAM or in an external EEPROM. Both meth-
ods are explained below.

3.2.1 External EEPROM for Calibration Constants

The storage of calibration constants, energy values, meter numbers and device versions
in external EEPROM's is necessary if the metering device is supplied by the mains. This
is due to the possible power failures that may occur.

The EEPROM is connected to the MSP430 by dedicated inputs and outputs. Three (two)
control lines are necessary for proper function:

- Data line SDA: an I/O-port is needed for this bi-directional line. Data can be read from
and written to the EEPROM
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Clock line SCL: an output line is sufficient for the clock line. This clock line may be
used for other peripheral devices too if it is ensured that no data is present on the
data line during use.

Supply line: if the current consumption of the EEPROM when not in use is too high
then switching of the EEPROM's V.. is necessary. Three possible solutions are shown:

1. The EEPROM is connected to SV, This is a very simple way to have the EEPROM
switched off when not in use

2. The EEPROM is switched on and off by an external PNP-transistor driven by an
output port.

3. The EEPROM is connected to +5 V permanently, if its power consumption does not
play a role.
SVee
+5V +5V
P0.2,0y
MSP430
Vee Clock
SCL P0.y,Ox
X24LCxx
—1 Ax SDA Data PO.x
Vss
l Vss Vee
ov l T
ov +5V
Iligure 3.5: External EEPROM Connections

An additional way to conneet an EEPROM to the MSP430 is shown in the section de-
seribing the IPC-Bus.

NOTE

The next example does not contain the necessary delay times between
the setting and resetting of the clock and data bits. These delay times
can be seen in the specifications of the EEPROM device. With a proces-
sor frequency of 1 MHz each one of the next instructions needs 5 ys.

EXAMPLE: The EEPROM with the dedicated VO-lines is controlled with normal I/O-
instructions. The SCL line is driven by 017, the SDA line is driven by P0.6. The line is
driven high by a resistor, and low by the output buffer.

POOUT .EQU 011lh ; Port0 Output register

PODIR .EQU 012h ; Port0 Direction register

SCL .EQU 0FOh ; 017 controls SCL, 039h LCD Address
SDA .EQU 040h ; PO.6 CONTROLS SDA

44
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LCDM .EQU 030h ; LCD control byte

INITIALIZE I C-BUS PORTS:
; INPUT DIRECTION: BUS LINE GETS HIGH
; OUTPUT BUFFER LOW: PREPARATION FOR LOW SIGNALS

BIC.B #SDA, &PODIR ; SDA TO INPUT DIRECTION
BIS.B #SCL, &LCDM+9 ; SET CLOCK HI
BIC.B #SDA, &POOUT ; SDA LOW IF OUTPUT

; START CONDITION: SCL AND SDA ARE HIGH, SDA IS SET LOW,
AFTERWARDS SCL GOES LO

BIS.B #SDA, &PODIR ; SET SDA LO (SDA GETS OUTPUT)
BIC.B #SCL, &LCDM+9 ; SET CLOCK LO

DATA TRANSFER: OUTPUT OF A "1"

BIC.B #SDA, &PODIR ; SET SDA HI
BIS.B #SCL, &«LCDM+9 ; SET CLOCK HI
BIC.B #SCL, &LCDM+9 ; SET CLOCK LO

DATA TRANSFER: OUTPUT OF A "0O"

BIS.B #SDA, &PODIR ; SET SDA LO
BIS.B #SCL, &LCDM+9 ; SET CLOCK HI
BIC.B #SCL, &LCDM+9 ; SET CLOCK LO

STOP CONDITION: SDA IS LOW, SCL IS HI, SDA IS SET HI

BIC.B #SDA, &PODIR ; SET SDA HI
BIS.B #SCL, &LCDM+9 ; Set SCL HI

The examples shown above for the different conditions can be implemented into a sub-
routine which outputs the contents of a register. This shortens the necessary ROM code
significantly. Instead of line Ox for the SCL line another 1/O-port P0.x may be used. See
section I'C-Bus Connection for more details of such a subroutine.

3.2.2 Internal RAM for Calibration Constants

The internal RAM can be used for the calibration constants if a permanently connected
battery is used for the power supply. The use of Low Power Mode 3 or 4 is necessary for
such applications to get battery life times of from 5 to 12 years.

3.3 M-BUS Connection

The MSP430 connection is shown in the next figure. Three supply modes are possible
when used with the TSS721:

Remote Supply: The MSP430 is fully powered from the TSS721

Remote Supply/Battery support: The MSP430 is supplied normally from the TSS721.
In case of a bus power fail the battery powers the MSP430

Battery Supply: The MSP430 is always supplied from its battery
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All these operating modes are described in detail in the "TSS5721 M-Bus Transceiver Ap-
plications Book".

1\
METER BUS
[‘iD ’_3|2kHz
P0.1 RXD TXI BUSLY —{_}
P0.2 TXD RXI  TsS721
Ay/RST/PO.y PF BUSL2 —{ 1+
MSP430
AX/PO.X I BUSLI —__F—1—9
Oy/POYy RXI  TsS721
AZ/RST/PO.2 PF BUSL2 — 1+
\4 \L
Iigure 3.6: TSS721 Connections to MSP430

Two different TSS721 connections are shown in the figure above:

— 1f the 8-bit Interval Timer with its UART is to be used then the upper connection is
necessary. TXI or TX are conneeted to RXD (P0.1) and RXI or RX are connected to
TXD (P0.2).

— If a pure software UART or an individual protocol is to be used, then any input and
output combination may be used

3.4 I’C-BUS Connection

If more than one device is to be conneeted to the I°C-Bus then two VO-ports are needed
for the control of the I'C-peripherals. The reason is the need to switch SDA and SCL to
the high impedance state.

The figure below shows the conneetion of three IFC-peripherals to the MSP430:
- An EEPROM with 128x8-bit data

— An EEPROM with 2048x8-bit data

— An 8-bit DAC/ADC

The bus lines are driven high by the R resistors (PO.x is input) and low by the output
ports (PO.X is output).
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—

+5V
Rp Rp
PO.a SCL
POb I I SDA
MSP430 SCL SDA SCL SDA SCL SDA 3
A2 |— A2 — Ax >v‘4—
EEPROM A1 |[— EEPROM A1 |— ADC/DAC AINx p&<—
128x8 AO [ 2048x8 A0 [— AOUT |—>
Vee Vss Vdd Vss vdd Vss vdd Vss
+5V ov +5V ov +5V ov +5V ov
Figure 3.7: [*C-Bus connections
NOTE

The next example does not contain the necessary delay times between
the setting and resetting of the clock and data bits. These delay times
can be seen in the specifications of the peripheral device.

The complete IFC-Handler for one byte of data follows. The data pin SDA needs an [/0-pin
(Port0); the clock pin SCL may be an 1/0-pin or an output pin that can be switched to HI-
7 (TP-Port of MSP430C31x e.g.).

Bit 15 8 7 0

Slave Address R/W Data

Figure 3.8: Word Format for I’C-Handler Call

SCL .EQU 080h ; P0.7 CONTROLS SCL

SCLDAT .EQU 0llh ; POOUT

SCLEN .EQU 012h ; PODIR

SDA .EQU 040h ; P0.6 CONTROLS SDA

SDAIN .EQU 010 ; PO input register

SDADAT .EQU 01llh ; PO output direction register
SDAEN .EQU 012h ; PO direction register

; INITIALIZATION FOR THE I2C-BUS PORTS:

; INPUT DIRECTION: BUS LINES GET HIGH BY PULL-UPS

; OUTPUT BUFFERS LOW: PREPARATION FOR LOW ACTIVE SIGNALS
; Initialization for SDA and SCL from Port0
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' BIC.B #SCL+SDA, &SDAEN  ; SCL AND SDA TO INPUT DIRECTION
BIC.B #SCL+SDA, &SDADAT ; SCL AND SDA OUTPUT BUFFER LOW

Initialization for SDA at Port0,

BIC.B #SDA, & SDAEN
BIC.B #SDA, & SDADAT
; BIC.BE #SCL, & SCLEN
BIC.B #SCL, &SDADAT

SCL at TP.x (MSP430C31x)

)

SDA TO INPUT DIRECTIOMN
SDA OUTPUT BUFFER LOVI
SCL to input direction

5CL OUTPUT BUFFER LOVI

(HI

(HI)

; I2C-Handler: Outputs or reads B8-bit data
; WRITE: R/@W = 0. R6 contains slave address and 8-bit data
Return: C 0: Transfer ok (R6 unchanged)
; ¢ = 1: Error (R6 unchanged)
;Call MOV . B data, R6 ; 8-bit data to R6
; BIS (2*addr) *0100h,R6 ; Address and function
; CALL #I2CHND ; Call handler
; Jo ERROR ; O = 1: Error occured
;READ: R/@W = 1. R6 contains slave address , low byte undefined
: Return: R6 contains 8-bit data in low byte, hi byte = 0
;Call MOV (2*addr+1)*0100h, R6 ; Address and function
; CALL #12CHND ; Call handler
; ; 8-bit info in R6 lo
T2CHND PUSH R5 ; Save registers
12C START CONDITION: SCL AND SDA ARE HIGH, SDA GOES LOW
; THEN SCL GOES LOW
BIS.B #SDA, &SDAEN ; SET SDA LO
BIS.B #SCL, &SCLEN ; SET SCIL, LINE LO
; Sending of the address bits (7) and R/@W-bit

MOV #8000h, RS ;
I2CcCL BIT R5,R6 ;

CALL #I2CSND

CLRC

RRC RS ;

CMP #080h, RS H

JNE I2CCL ;

; and R/@W sent: Receive of
Decision if read or write

Bit mask MSB
Bit carry
Send carry

Next address bit
R/@W sent?
No, continue

athen cknowledge bit,

CALL #I2CACKN
Jc I2CERR ; No acknowledge, error
BIT #100h,R6 ; Read or Write?
JNZ I2CRI
; Write: Continue with 8-bit data in low byte of R6
I2CWL BIT R5,R6 Write: continue with data
CALL #I2CSND
CLRC
RRC R5 ; If testbit in carry: finished
JNC I2CWL
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CALL #T2CACKN ; Acknowledge bit -~ carry
; Carry information: 0: Ok l: Error
I2CEND .EQU $
I2CERR BIC.B #SCL, &SCLEN ; Stop condition
BIC.B #5DA, &«SDAEN ; SET SDA HI
POP RS ; Restore RS
RET ; Carry into undestroyed

; Read: read 8 data bits to R6 low byte. RS 080h

I2CRI CALL #I2CRD ; Read bit -» carry

RLC.B R6 ; Carry to LSB R6

RRA RS ; Bit mask used tor count

JNC I2CRI ; Bit mask in carry: finished
CALL #12C0 ; Acknowledge bit = 0

JIMP I2CEND ; Carry = 0

Subroutines for 12C-Handler

Sendroutine: Info in Carry is sent out.
Acknowledge bit subroutine is used for clock output

T2CSND JNC 12C0 ; Info in carry
BIC.B #SDA, &«SDAEN ; Into = 1
JMP I2CACKN

I2C0 BIS.B #SDA, & SDAEN ; Info = 0

Reading of acknowledge (or data) bit to carry

T2CACKN .EQU $

I2CRD BIC.B #SCL, &SCLE
BIT.B #5SDA, &SDAIN
BIS.B #SCL, &SCLEN
RET

3.5 Hardware Optimization

The MSP430 permits using unused analog inputs (A7 to A0) and seleet lines (529 to S2)
for inputs and outputs respectively. The next two sections explain in detail how to pro-
gram and use these inputs and outputs.

3.5.1 Use of unused Analog Inputs

Unused Analog-to-Digital-Converter (ADC) inputs can be used as digital inputs or, with
some restrictions, as digital outputs.

3.5.1.1 Analog Inputs used for Digital Inputs

Any ADC input A7 to A0 can be used as a digital input. It is only necessary to program it
(for example during the initialization) for this function. Two things are important if this
feature is used:
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— Any activity at these digital inputs has to be stopped during ongoing sensitive ADC
measurements. This activity will cause noise which will falsify the ADC results. Activ-
ity means in this case:

- No change of the AEN register (switching between digital and analog mode)
- No input change at the digital ADC inputs (this allows only rarely changing input
signals at these inputs).

— All bits which are switched to ADC inputs will read zero when read. Therefore it is not
necessary to clear them by software after the reading.

Software Example: A0 to A4 are used as ADC inputs, Ab to A7 as digital inputs.

AIN CEQU 0110h ; Address DIGITAL INPUT REGISTER
AEN .EQU 0112h ; Addr 5 DIGITAL INPUT ENABLE REG.
ATEN LEQU 080h ; Bits in Dig. Input Enable Reg.:
A6EN . EQU 040h ; 0: ADC 1: Digital Input

ASEN .EQU 020h

INITIALIZATION: A7 TO A5 ARE SWITCHED TO DIGITAL INPUTS
;A4 TO A0 ARE USED AS ANALOG INPUTS
MOV #ATEN+A6GEN+ASEN, &AEN ; A7 TO A5 DIGITAL
MODE

; NORMAL PROGRAM EXECUTION:
; CHECK IF A7 OR A5 ARE HIGH. IF YES: JUMP TO LABEL L$100

BIT #ATEN+ASEN, &AIN ; A7 .OR. A5 HI?
JNZ L$100 ; YES
B ; NO, CONTINUE

; CHECK IF ALL DIGITAL INPUTS A7 TO A5 ARE LOW. IF YES: L$200

TST &ATIN ; A7 TO AS5 LO?
J7 L$200 ; YES, (ANALOG INPUTS READ
ZERO)

3.5.1.2 Analog Inputs used for Digital Outputs

Il outputs are very necessary then the unused ADC inputs with the Current Source con-
neetion can be used if the following restrictions are considered:

— Only one ADC input can be high at a given time (1 out of n principle)

— Only the ADC inputs A0 to A3 are usable (only they are connected to the Current
Source)

— The outputs can get high only during the time the ADC does not use the Current
Source

— The output current is directly related to the supply voltage V...

- The output voltage is only about 50% of the supply voltage V... Logic levels have to be
checked carefully therefore. A transistor stage may perhaps be necessary (if not there
anyway, e.g. for a relay)

- The output current is given by the current Source’s Current. The same considerations
as with the point before have to be made. The pull-down resistor has to be high
enough to allow the maximum output level.
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The example below shows the ADC part which uses the ADC inputs A0 and Al as digital
outputs driving two stages: a transistor stage (energy pulse e.g. with an clectricity me-
ter) and a 3V gate (3 V guarantees that the input levels are sufficient).

32kHz
r”]h lcs = 0.25 x SVcc/Rext
SVee llcs 5V
Rext

RI U—

Energy Output

A0 (T
MSP430 oV 433V
N {> M
To 3V Logic
ov
ov ov
Figure 3.9: Unused ADC inputs used as Outputs

EXAMPLE. To control the two outputs shown above the following software part is neces-
sary:

ACTL . EQU 0114h ; ADC CONTROL REGISTER ACTL

VREF -EQU 02h ; 0: Ext. Reference 1: SvVCC ON
A0 .EQU 0000h ; AD INPUT SELECT AO

Al . EQU 0004h ; Al

CSAC .EQU 000Ch ; CURRENT SOURCE TO AQO

CSAl .EQU 0040h ; Al

CSOFF -EQU 0100h ; CURRENT SOURCE OFF BIT

SET A0 HI FOR 3 ms: SELECT A0 FOR CURRENT SOURCE AND INPUT

MoV #VREF+A0+CSAQ, &ACTL ; PD = 0, SVCC = on
CALL #WAIT3MS ; WAIT 3 ms
BIS #CSOFF, &ACTL ; CURRENT SOURCE OFF;

; SET Al HI FOR 3 ms: SELECT Al FOR CURRENT SOURCE AND INPUT

MOV #VREF+Al1+CSAl, &ACTL ; PD = 0, SVCC = on
CALL #WAIT3MS ; WAIT 3 ms
BIS #CSOFF, &ACTL ; CURRENT SOURCE OFF

3.5.2 Use of unused Select Lines for Digital Outputs

The LCD-driver of the MSP430 provides additional digital outputs if select lines are not
used. Up to 28 digital outputs are possible by the hardware design, but not all of them
will be implemented for a given chip. The addressing scheme for the digital outputs 02 to
029 is as follows:

®i3 TEXAS INSTRUMENTS 51




Hardware Applications MSP430 Family

Address 7 6 5 4 3 2 1 0 Digit Nr. LCDP

03Ih 029 028 Digit 15 6o
03kh 027 026 Digit 14 6to0
03Dh 025 024 Digit 13 S0
03Ch 023 022 Digit 12 dtol
03Bh 021 020 Digit 11 4100
03Ah 019 018 Digit 10 4100
0:39h 017 016 Digit 9 3to0
038h 015 014 Digit 8 3to0
037h 013 012 Digit 7 2100
0:36h Ot 010 Digit 6 2to0)
035h 009 008 Digit H 1to0
034h 007 006 Digit 4 1to0)
033h 005 004 Digit 3 0
032h 003 002 Digit 2 0
031h h g [ ejd ¢ b a Digit 1

The above table shows the dependence of the select/output lines on the 3-bit value LCDP.
Only if LCDP = 7 are all lines switched to the LCD Mode (select lines). Only groups of
four seleet lines can be switched to digital output mode.
NOTES
The above table shows the digit environment for a 4dMUX LCD display.
The outputs O0 and O1 are not available: S0 and S1 are always imple-
mented. (digit 1).

The digital outputs Ox have always to be addressed with all four bits.
This means that 0Fh is to be used for the addressing of one output.

Only byte addressing is allowed for the addressing of the LCD controller
bytes.

Software example: S0 to S13 drive a AMUX LCD (7 digits). O14 to O17 are digital outputs.

;LCD Driver definitions:

LCDM .EQU 030h ; ADDRESS LCD CONTRCL BYTE
LCDMO .EQU 001h ; 0: LCD off 1: LCD on
LCDM1 .EQU 002h ; 0: high 0: low Impedance
MUX .EQU 004h ; MUX: static, 2MUX, 3MUX, 4MUX
LCDP .EQU 020h ; Select/Output Definition LCDM7/6/5
014 .EQU 00Fh ; Ol4 Control Definition
o015 .EQU 0FOh ; 015
ole .EQU 00Fh ; 0lée
o017 .EQU 0FOh ;017
INITIALIZATION: DISPLAY ON: LCDMO = 1
HI IMPEDANCE LCDM1 = 0
4AMUX : LCDM4/3/2 = 7
0l4 TO Ol17 ARE OUTPUTS: LCDM7/6/5 = 3
59 Ri3 TEXAS INSTRUMENTS



MSP430 Family Hardware Applications

MOV.B # (LCDP*3) + (MUX*7)+LCDMO, &LCDM ; INIT LCD

NORMAL PROGRAM EXECUTION:
SCME EXAMPLES HOW TO MODIFY THE DIGITAL OUTPUTS 014 TO 0O17:

BIS.B #014, «LCDM+8 ; SET 014, 015 UNCHANGED
BIC.B #015+014, &LCDM+8 ; RESET 014 AND 015

MOV . B #015+014, &LCDM+8 ; SET 014 AND 015

MOV. B #017, &LCDM+9 ; RESET Ol6, SET 017
XOR.B #017, «LCDM+9 ; TOGGLE 017, Ol6 STAYS UNCHANGED

3.6 Digital-to-Analog Converters

The MSP430 does not contain a Digital-to-Analog Converter (DAC) on-chip in its current
versions, but it is relatively simple to implement the DAC funetion if needed. Three dil-
ferent solutions with distinet hardware and software requirements are shown below:

— The R2R method
— The Weighted Resistors method
- Integrated Digital-to-Analog Converters conneeted to the FC-Bus

3.6.1 R/2R Method

With a CMOS shift register a Digital-to-Analog Converter can be built with any length.
The outputs Q_ of the shift register switeh the 2R-resistors to 0V or V. according to the
digital input. The voltage V,  at the non-inverting input and also at the output of the
opamp is:

Vour = K XVee
2”

with: k Value of the digital input word with n bits length
n Number of Q outputs, maximum length of input word
Vi Supply voltage

Signed output is possible by level shifting or by splitting of the power supply (+V,,/2 and
-Vi./2). With split power supplies the voltage at the output of the opamp is:

k v, ko1
Vmu = on X I/l'f' - el on o1
2 2 (2r 2

Advantages of the R/2R-Method:
- Only two different resistors are necessary (R and 2R)
- Absolute monotonicity over the complete output range
- Internal impedance independent of the digital value: impedance is always R
- Expandable to any bit length by adding shift registers
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L MsB
S8 Shift Register
OxPoa | [ Clock -
Oy.POb Data |, fToleng xpansion
QA QB Qc QH
MSP430 . - o o
o DAC Output
= R R R o System
0to +5V
Vee Vss
+5V ov

IYigure 3.10: R/2R Method for Digital-to-Analog Conversion

3.6.2 Weighted Resistors Method

The simplest Digital-to-Analog Conversion Method: only (n+3) resistors and an opamp
are required for an n-bit DAC. This method is used if the performance of the DAC may be
low.

The example shown below delivers 2" different output vollage steps. They may be seen
signed if the voltage V. /2 is seen as zero point. The output voltage at the DAC output is:

Ve =V = S L x R = L ((1 NI AVIL SV IR ~J
2 R 2R 4R 2"R
with: Vi Output voltage of the DAC
Vi Voltage at the non inverted input of the opamp (V/2)
Ve Supply voltage of the MSP430 and periphery
R Normalized resistor used with the DAC
a..X Multiplication factors for the weighted resistors:

-1 if port is switched to Vg
0 if port is switched to input direction (HI-Z)
+1 if port is switched to V..

Normally all of the ports are switched to the same potential (V ; or V,.) or are disabled.
This allows signed output voltages referenced to V. /2.
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POa

Pob N Vout

poc F—_1+—¢ p DAC Output
S— LB* to System
A
PO __{:2_@ t] a 0o Vee

MSP430

Rp
ov
Vee Vss
T
+5V ov

Figure 3.11: Weighted Resistors Method for Digital-to-Analog Conversion

3.6.3 Digital to Analog Converters connected via I°C-Bus

The figure below shows two different DAC's which are connected to the MSP430 via the
[C-Bus:

- A single output 8-bit Digital-to-Analog Converter (with additional 4 ADC inputs): one
analog output AOUT is provided.
- An octuple 6-bit DAC: eight analog outputs DACO to DAC7 are provided for the system

The generic software to handle these devices is contained in the section explaining the
[*C-Bus.

+5V
Rpt] hﬂn
P0a SCL
PO.b I SDA
MSP4.
% SCL SDA SCL SDA
ADC DAC
from system
3 A AINx *74—4 3 Vmax [*—— max. DAC
Vee Vss X AGND —ov Ax output voltage
[ I AOUT f—> DACx f—<5 Outputs
+5V ov to system to system
Vdd Vss Vp Vss
+5V ov +5V ov

Figure 3.12: I*C-Bus for Digital-to-Analog Converter Connection
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4 APPLICATION EXAMPLES

Several metering examples are given in the next sections. Common for nearly all of them
is the storage of calibration data, tables, constants ete. in external EEPROM's. External
[EEPROM's are used for safety reasons: if the microcomputer fails completely then it is
relatively casy to read out the accumulated consumption values. This is normally impos-
sible if these values reside in internal EEPROM's.

These BEEPROM's can store also tables that describe the principal errors of a given
measurement principle dependent on the input value (current, flow, heat ete.). The
MSP430 with its excellent table processing capabilities can determine the right starting
value out of these tables and caleulate the linear, quadratic or cubic approximate value
The next figure shows the principal error of a meter. The complete range starting at 1%
up to 200% is divided into sub ranges of different length. The appertain table contains
the starting point, the different distances and the inherent error at the beginning of each
range. With this information the MSP430 can caleulate the error at any point of the
measurement range.

Error %

I

Il
T T !
1% 10% 100% —_—
Measured Value %

FFigure 4.1: Segmentation of Measured Value
£

4.1 Electricity Meters

The MSP430 can be used in two completely different kinds of electronic electricity me-
ters. The difference of the two methods is mainly where the electrical energy

u':jz'x/xm

is measured:
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1. The electrical energy is measured in a frontend separated from the MSP430. Several
methods exist for doing that: Hall effect sensors, Ferraris wheel interfaces, analog
multipliers ete. The interface to the MSPA30 is normally a train of pulses, where every
pulse represents a defined energy (Ws, KWs, Wh). MSPA30C32x or MSPA30C3 1N may
be used.

. The electrical energy is calculated by the MSPA30 itself, using its 11-bit ADC for the
measurement of current and voltage. Only MSPA30C32x can be used.

The two different solutions are shown in figure 1.2

r{ 0 h:}zkm |—*| 0 h32kH1
SVee COoM Svee COM Lo
SEL SEL
—— Voltage Voltage a0
PO x [—— Penpherals PO x p—
Pulses Penpherals
Frontend POy
MSP430 Current MSP430
——{ Current o a1
AGND
AGND
Vss Vee Vss Vee
Figure 1.2: Two Methods for Electricity Meters

Only the second method is used with the electricity meters shown: the unnecessary fron-
tend gives a cost advantage when compared to the other solution.

4.1.1 Measurement Principle of the Electricity Meters

The "Reduced Scan Principle” used measures current and voltage at regular time inter-
vals and multiplies the current and voltage samples. The multiplication results are
summed up: the sum represents the used power (Ws, kWh). While the normally used
method measures voltage and current at the same time, the "Reduced Sean Principle”
measures voltage and current samples alternately. Every current sample is used twice:
once it is multiplied with the voltage value measured before, and once with the voltage
value measured afterwards. (To reduce further the necessary multiplications these two
multiplications are reduced to one by using the sum of the two current samples). The
measurement principle is shown in Figure 4.3.

This measurement principle is implemented in an evaluation board for a 3-phase meter
which has a typical error of 0.2%. See Figure 4.6.
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/5/——\& citdge
/Y NN
Curfent
q
A9
—2 At [
Pawer
< Sampling Point ]
FFigure 4.3: Measurement Principle

The measured energy W is:

[ [=e
W= (u, %0, +u,xi, VXA = Y0, X (0, +1,,) XAl

-0 1=0

with: w Accumulated energy [Ws]
u, Voltage sample at time t,
i, Current sample at time t, ,
[ Current sample at time t,,,
At Sampling interval between voltage and current measurements

The "Reduced Scan Principle” has a small inherent error caused by the phase shift, al-
ternately inductive and capacitive, due to the time interval between voltage and current
measurements. The value of this error e is:

e=[cos(Dtxfx2p)—1]x100

with: e Error in per cent
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At Sampling interval between voltage and current measurements
f Mains frequency

For example: for a system with (f = 50 Hz, At = 150 us) the inherent error is 0.111%.
This error can be eliminated during runtime by multiplication of the accumulated sum by
the correction constant ¢:

1
(=
COoS(Al X ' x 2m)

The correction factor ¢ is normally included in the calibration constants and not used
explicitly.

The advantages of the "Reduced Scan Principle” are:

= Only 50" measurements are necessary because every measured current or vollage
value is used twice

= Only 50% multiplications are necessary because two current values are added before
multiplication

= Only one Analog-to-Digital-Converter is needed compared to two per phase with the
normal method.

- The computing power gained by reducing the number of multiplications can be used
by the microcomputer for other system jobs: the MSP430 does the work of the frontend
and the host computer.

4.1.2 Single Phase Electricity Meters

The next two Electronic Electricity Meter proposals are made for the measurement of
European mains. From the utility one phase and ground are led into the house. In this
way a nominal voltage of 230 V is available.

To measure the electric energy consumed a current transformer or a shunt resistor is
necessary: both solutions are shown. The voltage of the phase is also measured. With
this configuration the energy consumption of the load can be exactly measured.

The Analog-to-Digital-Converter (ADC) of the MSP430 measures the voltage between its
Vi and V. connections with a resolution of 14 bits. To shift the signed voltages coming
from the current transformer and voltage divider into the unsigned range of the ADC a
split power supply with +2.5 V and -2.5 V is used: the common ground of these two power
supplies has a voltage of one half of the voltage SV,,.. This voltage is used as a base for
the ADC voltages. The MSP430 measures this base voltage at regular intervals and sub-
tracts it from every measured current or voltage sample: in this way signed measure-
ment is possible.
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The ultra low current consumption of the MSP430 allows a very small power supply and
battery operation:

— Run Mode: 1.4 mA max. (@ 5V (1 MHz, 25°C, MSP430C323)
— Low Power Mode: 5 pA max. @ 5V (LCD active, CPU halted, 25°C, MSP430C323)

Any customized LCD can be connected to the MSP430 as long as it meets the electrical
specifications (max. capacitance per select and common lines, for example). Every seg-
ment of the LCD can be controlled independently of the other ones: all 256 (statice, 2MUX
and AMUX) and 512 (3MUX) segment combinations are possible.

The EEPROM contains data that must not be lost during power down cycles:

— Calibration dala
Meter number and other device related numbers
— Accumulated energy (stored in regular intervals e.g. every hour)
— Phase error of the current transformer (error = (1))
— Other data

Depending on the amount of data to be stored an EEPROM with 128 x 8 bit or with
256 x 8 bit is used.

The solution which uses a current transformer for the measurement of the load current
is shown in Figure 4.4. The secondary current | of the transformer, which is

secondary

)
_ primry

secondary R primary

secondary

flows through two paralleled resistors and generates a voltage U_ ... which is meas-
ured by the MSP430. For currents greater than a certain value the resistor with the
lower value is switched on by the analog switch TLC40161; for low currents this switch is
opened to get a higher voltage and therefore a better resolution.

Il needed, additional current ranges can be implemented (three analog switches of the
TLC40161 are not used).
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Live Current Transformer

-
-

Load
220V
Neutral

TLC40161
:I »-{:E}‘ Range Switch
)

32kHz

e

o

Out Clk
EEPROM
ate
ov A0 Pox Data
out ™D
.. :
A3 TS$721 | MBUS
RCD

" . MSP430
LMx85 Ure POy >
AGND

Ke:
PO 2 | KXY ey

Vss Vcc POk f—> Pulse Ws
l l—KHF-o 25V

25V 425V Backup Battery

Figure 4.4: Electricity Meter with Current Transformer

The solution which uses a shunt resistor for the mcasurcment of the load current is
shown in Figure 4.5. The load current 1, flows through the shunt which has a resis-
tance of approx. 30 mQ. The voltage drop at the shunt is amplificd and measured by the
MSP430. The voltage U, seen at the ADC of the MSP430 is:

l/. A = I(‘ X Ii‘\‘lulr// X Il,mul
with: UL Voltage at the ADC input
k Amplification of the operational amplifier
Repune Resistance of the shunt resistor
L Load current

If needed, additional current ranges can be implemented (three analog switches of the
TLC4016I are not used).
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Live

Load
220V
Neutral Rshunt

Range Switch TLC4016I

32kHz
] allsl
SVee . |':]:
[ A | o o

f] — Out Out Clk
EEPROM
Y
ov A0 PO x Data
XD _
a3 ‘ 188721 | MBUS
. RCD
. MSP430
LMx8S Ure POy ~
—— AGND

Ke:
p0 2 f—NEY oy

Vss Vce POk [ Pulse Ws
o -25v

25V 12,5V Backup Battery

IYigure 4.5: Eleetricity Meter with Shunt Resistor

To have a reference for the measurements a reference diode LMx85 is used. The voltage
of this diode is measured in regular intervals and the measured value is used as a base
for the SV, relative ADC measurements.

No reference diode is necessary if voltage regulators are used with the necessary accu-
racy and long term stability.

The reference used should have a long term stability better than twice the needed accu-
racy.

I"igure 4.6 shows a single phase electricity meter that uses a shunt for the current meas-
urement. The electricity meter shown was built up for demonstration purposes and for
measurements. The demonstration board shows an error of less than 1% in the power
range from 23 W to 2800 W.

The voltage of the shunt resistor is shifted into the ADC range by the Current Source.
The offset error of the voltage path is eliminated by two analog switches (4066): in regu-
lar time intervals (e.g. every minute) one voltage measurement is omitted and the ADC
result of the voltage divider R/R, is measured instead. The load voltage is disconnected
by the analog switches during this measurement. The measured ADC result is the zero
point and is subtracted from every voltage measurement.
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If the voltage and current samples contain offsets then the equation for the measured
energy W is:

frm

W =Y (u,+0,)x(i, +0,)x Al

r-0

W= 2(11“ X, +u, xO0 +i X0, +0 x0 )yx At

o

with: 0, Offset of voltage measurement

0, Offset of current measurement

The terms (u, x O) and (i, x 0,) get zero when summed-up over one full period (the inte-
gral of a sine from 0 to 2m is 0) but the term (0, x 0,) is added erroncously to the sum
buffer with cach sample result. If one of the two offsets can be made zero then the error
term (O, x ) is eliminated: This is the case due to the regular measurement of the volt-
age offset value O,
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I \
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Iligure 4.6: Single Phase Elecetricity Meter

4.1.3 Two Phase Electricity Meter

An Electronie Electricity Meter is shown for the measurement of US domestic mains. As
power connections two phases and ground are led into the house. This allows the use of
two voltages: 120 V and 240 V.

To measure the eleetrie energy used two current transformers are necessary. The volt-
age of each phase is measured direetly. With this configuration the energy consumption
of any load connection can be measured exaetly: loads from any phase to ground (120 V)
are measured as well as loads connected between the two phases (240 V).

Voltage measurement: the voltage of each phase is adapted to the ADC range by a simple
voltage divider.
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Power factor measurement: The phase angle ¢ between voltage and current can be
measured as a background task.

Current Transtormer

Lve
Load
’—D{¥} Range Switch |L'zo‘v
Neutral {1
Load
Load 240V
Current Tr 120V
Live L
-
H:}@
—
32kHz
ou_[10H
SVee ==
I o com I_J:,I_E,
I A3 SEL ||
A2
At Out Ck
EEPROM)
I;| A0 PO x Data
C—] Out XD
TLE2426C A5 TSS721 | MBUS
RCD ——

MSP430
LMx85 Uret POy o
AGND
Key
P07 L,
Vss  Vec POk Pulse Ws
] e

ov 45V Backup Battery

Figure 4.7: Eleetricity Meter with Current Transformers and virtual Ground

Two current transformers are necessary if loads are possible with all three existing
voltages (2 x 120 V, 240 V). The secondary current | of the transformer, which is

secondary

)
primary

secondary s primary

secondary

flows through two parallel resistors and generates a voltage U which is measured
by the MSP430. For currents exceeding a certain value the resistor with the lower resis-
tance is switched into the signal path additionally by the analog switch TLC40161. For
low currents this switch is opened to get a higher voltage and therefore a better resolu-
tion.

If needed, additional current ranges can be implemented (two analog switches of the
TLC4016I are not used).
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The "Virtual Ground” IC TLE2426C is used to get a measurement reference in the middle
of the ADC range (AGND to SV,). All current and voltage inputs are referenced to the
"Virtual Ground" output of this circuit. The main advantage is the possibility of measur-
ing the ADC value of this reference point without the necessity of switching off the volt-
age and current inputs.

The measured value (at analog input A0) is subtracted from every measured current or
voltage sample which gives signed results.

Instead of the virtual ground circuit TLE2426C two voltage regulators with output volt-
ages of +2.5 V and 2.5 V may be used. In this case the common zero is the reference for
all current and voltage measurements and is connected to the analog input A0,

The schematice is shown in IFigure 4.8,

aurre ransform
Live Current Transformer

-
-
Load
- H] range swien Py
Neutral 1} []
Load
Load 240V
Current Tr. 120V
Live
-
h b :}_in 4
—
‘ g S—
32kHz
Out r“]h
SV =
| o O e
I a3 SEL I
[I] A2 Out Clk
v
"
ov A0 PO.x Data
“ -
TSS721 MBUS
[ AS RCD
MSP430
LMx85 Uref POy >
AGND P
~Key
POz b— +
Vss Vcc POk —> Pulse Ws
l MFO 2.5V
2.5V 425V Backup Battery
Figure 4.8: Electricity Meter with Current Transformers and split Power Supplies

The M-Bus interface allows the connection of the electricity meter to networks. The M-
Bus interface uses the on-chip UART.
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Applications of the M-Bus interface:

1. Calibration: Connection to the calibration hardware

2. Automatic readout by a host: The actual consumption and other interesting values
may be read out.

3. Tariff switching

4. Test: Start of ROM-based testing routines

Instead of the M-Bus any other bus may be used with the MSP430.

The Infrared Interface IR-IF allows bi-directional data transfer for calibration, test and
readout.

To have a reference for the measurements a reference diode LMx85 is used. The voltage
of this diode is measured in regular intervals and the measured value is used as a base
for the SV . relative ADC measurements.

No reference diode is necessary if a +5V voltage regulator is used with the necessary
accuracy and long term stability.

The stability of the reference should be better than factor 2 of the desired accuracy of the
clectricity meter.

Some options are shown for interfacing the MSP430 to other devices:

- Pulse Output: This output changes its state when a certain energy amount is con-
sumed. Usable during calibration or accuracy checks. Mechanical displays can also
use this pulse output.

- Key Interface: Keys can be interfaced very simply to the inputs of the MSP430.

4.2 Gas Meter

A gas meter is shown that contains all peripherals which modern gas meters may have.
The volume interface is shown for a mechanical meter, and on the left side for an elec-
tronic solution:

- The mechanical interface uses contacts to give the volume information to the MSP430.
The output Oz is used for scanning, reducing this way the current flow if one or more
contacts are closed permanently.

~ The electronic interface outputs electrical signals to the MSP430 as long as the enable
input is high. The signals V, and V, are 90° out of phase to allow a reliable distinction
of the gas flow direction.

The gas temperature is measured with the ADC of the MSP430: this allows a much better
accuracy for the volume measurement, because the dependence of the gas volume to the
temperature can be taken into account.

Any combination of the peripherals shown can be used for a given solution: it is not nec-
essary to have all of them implemented.
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The MSP430 is normally in Low Power Mode 3 (I = 5 pA nom.), but all enabled interrupt

sources will wake it up:

1. Every change of the volume interface if output Oz is high

2. Timing of the Basic Timer: this allows keeping the timing and the scanning if Oz is low
due to closed contacts..

3. Actuation of the key

4. M-BUS activity

5. Prepayment interface

[—{Dl}kaZ
SvVee COM
SEL
AQ Ox
PO O
Gas
Temperature AGND ™0

l Gas Flow lGusFlow MSP430

Mode/LCD

+

Enable

o
‘ A f—

(

POS Oy ——— Pulse Iters
Volume Vi Volume
Interface L yp Interface han NG

PREPAYMENT [
0 x ferind
U POXT7™1 INTERFACE g

Vee  Vss
i \\//12 L{%m
IYigure 4.9: Gas Meter with MSP430032x
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The gas meter can be built-up also with the MSP430C31x version. The only difference is
the conneetion of the temperature sensor to the MSP430. The next figure shows this con-
figuration:

32kHz

0w
“eAr ™ e N IIJUGEAT

TPD 1

& Ox [ Chk
as P00 EEPROM|
Temperature POO Data

Asens

XD
158721 | mMBUS

RCD

l Gas Flow l Gas Flow MSP430
P03 IR-IF

Enable Mode/LCD
4

Volume
Interface

Volume
Interface

0z Al S N
~.

; P
v2 06 PREPAYMENT
Pox [ INTERFACE |
Vee Vss B |
Vi H}_’
V2 3V/9uA

Figure 4.10: Gas Meter with MSP430C31x

4.3 Water Flow Meter

The water flow meter uses an electronic interface to the rotating part of the meter.
These signals are 90° out of phase for reliable scanning of direction. The MSP430 is
normally in Low Power Mode 3 normally, but every change coming from the volume inter-
face wakes it up.

The water flow meter can be built up also with the MSP430C31x version of the MSP430
family. The only difference is the connection of the sensor for the water temperature. See
the above gas meter solution with the MSP430C31x version for details.
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Iigure 4.11: Llectronic Water Flow Meter

4.4 Heat Allocation Counter

A Heal Allocation Counter with the possibility of sending out the consumption informa-
tion via RF-frequencies is shown below. The RAM information is serambled by the DES
standard and sent out using the bi-phase code with 19.2 kBaud. The software routines
used for the serambling and the transmission are contained in the section "Data Secu-
rity".

The heat consumption is computed from the measured room temperature and the heater
temperature. The heat consumption is summed up in the RAM and can be read out by
the LCD, the M-BUS connection or the RF interface.

The calibration constants and all other important data are contained in the MSP430's
RAM. Low Power Mode 3 (CPU off, oscillator on) is used normally; the CPU wakes-up at
regular intervals (e.g. 3 minutes), measures the heater and the room temperature, and
caleulates out of these the actual energy consumption of the radiator. The formulas used
take into account the non-linear characteristies given by the thermodynamic theory. This
is possible by the use of tables or quadratic or cubic equations.
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L |

Rext SVDD
E HI P04 19 2kBaud RF’
A‘ Biphase Code Un"
Heater T A2
MSP430C32x
Room T. AGND
Keve H Poz CoMO-3
eys /
"~ poy SELO-9 :}
2
MBUS- POX vee vss LCcD

[—|}—| 3V/5uA

Figure 14.12: Eleetronie Heat Allocation Meter with MSP430C32x

The heat allocation meter can be built-up also with the MSP430C3 Ix version. Figure 4.13
shows the schematie for this configuration.

. N
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Room T TPD.1 fohase Code 1 Unit
Heater T ‘-—#— TPD .2
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2
I—{)—] 3V/5uA

Figure 4.13: Electronic Heat Allocation Meter with MSP430C31x

4.5 Heat Volume Counter

The Heat Volume Counter shown in Figure 4.14 is developed for relatively long sensor
lines. An LC-filter is used to prevent spikes and noise at the analog inputs of the MSP430.
The system normally runs in Low Power Mode 3 (CPU off, oscillator on) but any change
at one of the inputs will wake-up the MSP430.

Every platinum sensor from 100 Q to 1500 Q can be used with the MSP430: the Current
Source is able to drive them.
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IFigure 4.14:

Heat Volume Counter MSP430C32x

The Four-Wire circuitry can also be used here. It is possible to use only five analog in-

puts with the schematie below.
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Figure 4.15:

Heat Volume Counter with 4-Wire-Circuitry MSP430C32x

Figure 4.15a shows the same heat volume counter as figure 4.15 but with an enlargement
of the ADC-resolution to 16 bits. The principle is explained in chapter 2.1.2.5. See there

for details of operation.
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Figure £.15a: Heat Volume Counter with 16-bits Resolution MSP430032x

4.6 Battery Charge Meter

‘The battery charge meter shown below monitors the charge of a battery by means of the

measurement of all relevant parameters:

- Battery voltage is measured with the voltage divider R /R,. This voltage is used for the
recognition of the end of charge (the battery voltage reduces in a certain manner) and
for safety reasons.

- Battery current: the voltage across a shunt gives an exact indication of the current
flowing. The low shunt voltage is shifted into the ADC range by a resistor R, using the
Current Source of the MSP430. The battery current is measured signed (positive sign
means charge, negative sign means discharge) to give the possibility of treating
charge and discharge currents differently.

- Battery temperature: the resistance of the temperature sensor is measured with the
current of the Current Source.

The battery charge meter shown is not restricted concerning the magnitude of voltage,
current or capacity of the batteries controlled: these depend only on the design of the
shunt resistor, the voltage divider and the calibration constants used. It can be used for
cascaded batteries as well as for single ones.

The reference voltage for the system is delivered by the voltage regulator output; the
voltage therefore needs to be sufficiently stable. Referencing by a reference diode
(LMx85) is also possible. This reference diode may be measured at regular intervals and
the result stored. It is not necessary to have the reference always switched on.

ki3 TEXAS INSTRUMENTS 73




Application Examples MSP430 Family

The charge indication can be given with a numerical LCD or, as shown below, with a bat-
tery symbol showing 20% steps. Other methods for indication are also possible e.g. LED's
with different colours that are enabled for a short time by a key stroke.

The voltage regulator needs to have a very low supply current, not exceeding some micro
amps. This is necessary due to the long periods the system can be in rest mode (no load).
The charge part shown is not necessary for all applications; it can be omitted if, for ex-
ample, the available space is not provided.

The charge transistor Q, is switched on by the MSP430 if a certain charge level is
reached. The charge current can be fine tuned by PWM. If the charge current is above
the maximum current the transistor is switched off due to safety reasons.

The host connection (for example via RS232 using the MSP430's UART) can be used for
the transfer of data: charge, temperature, voltage, current and other system related
data. In the other direction the host can transfer instructions: stop or start of charge.
start of data transmission ete.

To Host

s H -
32kHz

[

Temperature

Batteries Load

o N

Q

[e]

=
i
=
| T

p:]
[ EA—

To Loader A2 [J
Al
MSP430 ctage
Voltage +3V R3
g vee a0 [0 T
Regulator -
R2
oz Shunt
Vss AGND
o 1 1

Figure 4.16: Battery Charge Meter MSP430C32x

4.7 Connection of Sensors

4.7.1 Different Ways to connect Sensors

Figure 4.17 shows the connection of simple resistive sensors to the MSP430C32x. The
Current Source resistor R, needs to be calculated in a way that allows its use for both
sensor cireuits (R, and R ).

The ways of connection shown in figure 4.17 are described in detail in chapter 2.

sens2
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SVce SVce

R [j Rext A

les A6

Vin | A A4
A — a2
Al

Rsens1 Rsens2 A0 s

A7

)@’ MSP430C32x

AGND AGND

Riin
Vss Vee
ov +3V (+5V)
Figure 1.17: Resistive Sensors connected to MSP430032x

£.7.1.1 Voltage Supply
The sensor Rsenst in figure 4.17 is connected this way. Resistor l{‘ supplies the sensor
and is used for the linearization too. The optimum value of R

senst

R, X(R, +R)-2xR xR
' R+ -2xR,

R =

Where:

R, Sensor resistance at the lower temperature limit T,
R, Sensor resistance at the upper temperature limit l”
R, sensor resistance at the medium temperature (T, -T,)/2
The ADC values measured are independent of the supply voltage V... because the meas-
urements are made relative to V.

4.7.1.2 Current Supply

Sensor R, ., in figure 4.17 is connected this way. If a linearization of the sensor is

wished the same formula used for the voltage supply may be used for the resistor R
See above

lin®

4.7.1.3 Use of Reference Resistors

Two measurement methods with reference resistors are possible: the use of one refer-
ence resistor and the use of two reference resistors:

1. Measurement with one reference resistor: the reference resistor is chosen in a way
that it equals the sensor resistance at the most important measurement point. Even-
tually sensor and reference resistor are selected as pairs. The offset error is elimi-
nated completely this way, only the slope error needs to be corrected.

2. Measurement with two reference resistors: the two reference resistors represent
the sensor resistances at the limits of the measurement range. This method corrects
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also the influence of the internal resistance (R, of the outputs (MSP430C31x). If
sensors and reference resistors are paired, no calibration is necessary with this
method.

With two reference resistors R, and R, it is possible to compute slope and offset and
Lo get the value of an unknown resistors R, exactly:

e 4—i—jv":f;x(/t
" N,,-N

el refl

refe [i//'/l )+ [')’n/-_'

with: N, ADC conversion result for R,
N ADC conversion result for R,

N ADC conversion result for R,
R, Resistance of R,
R, Resistance of R,

As shown only known or measurable values are needed for the computation of R, from
N.. Slope and offset of the ADC are corrected automatically.

TP.0
TP 1
TP 2
TP.3

Rref1

CIN

MSP430C31x

C-L—__,_ — AGND
Vss Vee

[T

ov +3V (+5V)

IFigure 4.18: Measurement with Reference Resistors (MSP430C31x)

4.7.1.4 Connection of Bridge Assemblies

This kind of sensors is best known for pressure measurement: the voltage difference of
the bridge legs ehanges with the pressure to be measured.
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Bridge Assembly 1 Bridge Assembly 2

SVee SVee
Ri
A2
Al A3
A0 A4

MSP430C32x

Temp2

AGND AGND

Vss Vee

oV +3V (+5V)

Figure 1.14%: Conneetion of Bridge Assemblies

Figure 1,19 shows in its left part a bridge assembly that ereates a voltage difference that
is big enough to be measured by the ADC of the MSP430. The measurement result is the
difference of the two results of the analog inputs A2 and A1, Due to the temperature de-
pendence of most bridge assemblies a compensation of this dependence is necessary.
The sensor Templ is used therefore to measure the temperature of the bridge legs (it is
integrated in some bridge assemblies).

The used formulae is:

P o= MWPx(Y +(T-TH)xT)+Y +(T'=T)xT,

Lo

where:

p Pressure to be measured

MwWpP Difference of the measured values at A2 and A1
Sensitivity of the pressure sensor

T Temperature of the sensor

T, Temperature coefficient of the sensitivity

Y, Offset

T, Temperature coefficient of the offset

T, Temperature during Calibration (e.g. +25°C)

If the difference of the two measurement results is too small to be used then an opamp as
shown in the right part of figure 4.19 may be used.

4.7.2 Connection of Special Sensors

Not only analog sensors can be connected to members of the MSP430 family. Nearly all
existing sensors can be connected to the MSP430 in a simple way. The examples follow-
ing will prove this.
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4.7.2.1 Gas Sensors

The right part of figure 4.20 shows the connection of two gas sensors (CH,, hydrogen. al-
cohol, carbon monoxide, ozone etc.). The gas sensor at the right side (connected to A0) is
supplied by the internal current source of the MSP430C32x, where the current flowing
through the sensor is defined by the resistor R,,. The gas sensor shown at the left
(connected to A1) owns a load resistance R, where the output voltage can be measured
with the ADC input A1,

Both sensors are heated by a pulse-width modulated voltage. The medium current is
133 mA, the power is 120 mW. The measurement of the sensor resistances is made al-
ways during the period without current flow.

The temperature dependence of the sensor is corrected by the measurement of the sen-
sor temperature: this is made by sensor Temp2.

Only the MSP430032x may be used for this kind of sensors: they are not potential free so
the MSP430C31 cannot be used.

32kHz

5V [_[]'_] .

—{— 1] Poywx.0z VH
PO x,Oy
IH = 63 - 80mA (SP-xx) )
IH = 200mA (ST-xx) VH SVee
N S ~— 1= 133mA
MSP430C32x RL
N AH Ri Rext
FIS SPx/SToxx 4 M 0 »
A3
‘?TET o Q)
2 1 A2
AGND
bt Temp2 FIS SB-xx
A4
AGND
AGND
AL
Vss Vdd
AGND OV F l

ov +5V

IFigure 4.20: Gas Sensor Connection to the MSP430C32x

The left part of figure 4.20 shows the connection of another gas sensor. The heating of
the sensor is made here with 5V DC. The connection is possible only the way shown.
therefore the current source cannot be used. Temperature compensation of the meas-
urement result is necessary here too. Sensor Temp1 is used for this purpose.

4.7.2.2 Digital Sensors

Figure 4.21 shows two digital thermometers. They are controlled by instructions via the
data bus DQ. The signed measurement result (9 bits) and other internal registers are ac-
cessible too via the data bus DQ. The circuit shown left uses a clock line for the data
transfer, the right one differs the signals by their length (short is 1. longis 0).
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,—— SVee.Vee l—ﬁ Svce,Vee
Vdd ek PO.x.0z vdd
DQ POy ’B" DQ POy
GND RST fe——1 po 2.0y GND
MSP430
DS1620 MSP430 DS1820
AGND AGND
Vss Vee Vss Vee
I —— I
ov L5V To other DS1820 ov 13V (+5V)
Figure 4.21: Connection of Digital Sensors (Thermometer)

4.7.2.3 Sensors with Frequeney Output

The output signal of these sensors is a frequeney that is proportional to the measured
value. This output frequency can be connected to any of the eight inputs of Port0 and
counted via interrupt with a simple software routine. The frequency is the number of in-
terrupts occurring in a one second window defined by the Basic Timer.

If the frequencies to be measured are above 30 kHz then the Universal Timer/Port or the
8-bit Interval Timer/Counter may be used for counting.

The left part of figure 4.22 shows the connection of the linear "Light-Frequency-
Converter” TSL220 to the MSP430. The TSL220 outputs a frequency proportional to the
incoming light intensity. The range of this output frequency is defined by the capacitor
R

C,.

= SVCC,VCC "
Light
2, Vvdd T Vdd
nna I

e Out POy PO, CIN Data
o c2 onp GND
MSP430
TSL220 Sensor
AGND  AGND
Vss Vce

l

ov +5V (+3V)

Figure 4.22: Connection of Sensors with Frequency Output resp. Time Output
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4.7.2.4 Time Measurements

If the information to be measured is represented by pulse distances or pulse widths then
it is also casy to be measured with the MSP430. The right part of figure 4.22 shows how
to do this.

The signal to be measured is connected to one of the eight inputs of Port0. Each one of
these 1/0s allows interrupt on the trailing and on the leading edge. With the Basic Timer
an appropriate timing is selected for the needed resolution and the measurement made.
The Universal Timer/Port may be used for this purpose too: the pulse to be measured is
connected to pin CIN and the time measured from edge to edge.

4.7.2.5 Hall Sensors

Digital hall sensors have an output signal that indicates if the magnetic flux flowing
through them is larger or smaller than a certain value. They normally show a hysteresis.
IFigure 4.23 shows the conneetion of a revolution counter realized with the TL3101. Every
time one of the wings breaks the magnetie flux through the TL3101 a negative pulse is
generated and output. These pulses are counted by the MSPA30 with interrupt.

SVee Vee
Vee ﬂ ﬂ H
Output POy
GND
| MSP430
TL3101
S { AGND
Vss Ve
ov +3V (+5V)
IFigure 4.23: Revolution Counter with a Digital Hall Sensor

Analog hall sensors output a signal that is proportional to the magnetic flux through
them. For these applications only the MSP430C32x with its 14-bit ADC is usable. During
the calibration the ADC value at a known magnetic flux is measured and used for the
correction of the slope. The ADC value measured at the magnetie flux zero is subtracted
from any measured value. The calculated correction values are stored in the RAM or in
an external EEPROM. For the correction of the temperature coefficient of the hall sensor
a temperature sensor may be used.

Figure 4.24 shows the connection of an analog hall sensor to the MSP430C32x and the
typical output voltage dependent on the magnetic flux.
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Output
Vee
Rext
SVce
Vee 08
Output Al
GND
/ A0 08
Magn Flux Temp MSP430C32x
- AGND
o7
Vss Vee
I l T ' Magn Flux Density
25 00 +25 - -
ov +5V mT

Figure 1.24:

Measurement of the magnetic Flux with an Analog Hall Sensor
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5 SOFTWARE APPLICATIONS

5.1 Integer Calculation Subroutines

Integer routines have important advantages compared to all other calculation subrou-
tines:

1. Speed: Highest speed is possible especially if no loops are used

2. ROM space: Least ROM space is needed for these subroutines

3. Adaptability:  With the following definitions it is very easy to adapt the subroutines
to the actual needs. The necessary caleulation registers can be lo-
cated in the RAM or in registers.

The following definitions are valid for all of the following Integer Subroutines

Integer Subroutines Definitions

IRBT .EQU R9 ; Bit test register MPY
TROP1 .EQU R4 ; First operand

IROP2L .EQU RS ; Second operand low word
TROP2M .EQU R6 ; Second operand high word
IRACL .EQU R7 ; Result low word

TRACM .EQU R8 ; Result high word

All multiplication subroutines shown below permit two different modes:

1. The normal multiplication: the result of the multiplication is placed into the result
registers

2. The "Multiplication and Accumulation” function (MAC): the result of the multiplication
is added to the previous content of the result registers.

5.1.1 Unsigned Multiplication 16 x 16 bits

The following subroutine performs an unsigned 16 x 16-bit multiplication (label MPYU)
or "Multiplication and Accumulation" (label MACU). The multiplication subroutine clears
the result registers IRACL and IRACM before the start; the MACU subroutine adds the
result of the multiplication to the contents of the result registers.

The multiplication loop starting at label MACU is the same one as the one used for the
signed multiplication. This allows the use of this subroutine for signed and unsigned
multiplication if both are needed. The registers used are shown below:
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15 0
| R9 IRBT ] Bit Test Register

| R4 IROP1 l Multiplicand

L R6 IROP2M I R5 IROP2L ] Multiplier
l R8 IRACM I R7 IRACL J Accumulated Result
FFigure 5.1: 16 x 16-bit Multiplication : Register Use

EXECUTION TIMES FOR REGISTERS USED (CYCLES @ 1MHZ) :

TASK MACU MPYU EXAMPLE
; MINIMUM 132 134 00000h x 00000h 000000000h
; MEDIUM 148 150 0A5A5h x 05A5Ah = 03A763E02h
; MAXIMUM 164 166 OFFFFh x OFFFFh = OFFFE0001lh

; UNSIGNED MULTIPLY SUBROUTINE: IROP1 x IROPZL -> IRACM/IRACL
; USED REGISTERS IROP1l, IROP2L, IROP2M, IRACL, IRACM, IRBT

MPYU CLR IRACL ; 0 -» LSBs RESULT
CLR IRACM ; 0 -> MSBs RESULT

; UNSIGNED MULTIPLY AND ACCUMULATE SUBROUTINE:
; (IROP1 x IROP2L) + IRACM|IRACL -> IRACM|IRACL

MACU CLR IROP2M ; MSBs MULTIPLIER
MOV #1, IRBT ; BIT TEST REGISTER
L5002 BIT IRBT, IROPL ; TEST ACTUAL BIT
Jz L$01 ; IF 0: DO NOTHING
ADD IROP2L, IRACL ; IF 1: ADD MULTIPLIER TO RESULT
ADDC IROP2M, IRACM
L$01 RLA IROP2L ; MULTIPLIER x 2
RLC IROP2M i
RLA IRBT ; NEXT BIT TO TEST
JNC L$002 ; IF BIT IN CARRY: FINISHED
RET

5.1.2 Signed Multiplication 16 x 16 bits

The following subroutine performs a signed 16 x 16-bit multiplication (label MPYS) or
"Multiplication and Accumulation” (label MACS). The multiplication subroutine clears
the result registers [IRACL and IRACM before the start; the MACS subroutine adds the
result of the multiplication to the contents of the result registers. The register use is the
same as with the unsigned multiplication; Figure 5.1 is therefore also valid.
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EZECUTION TIMES FOR REGISTERS USED (CYCLES @ 1MEZ):

TAGK. MACS MPYS E¥AMPLE

MINIMUM 138 140 00000h » 0CCO = 00000000%h

MEDIUM 155 157 0ASASh x 05A5Ah = OEO E02h
; MAXIMUM 172 174 OFFFFh x OFFFFh = 000000001h

STGNED MULTIPLY SUBROUTINE: IROPL x IROP2L -~ I[RACM|IRACL
; USED REGISTERS TROPL, IROP2L, IROPZM, IRACL, IRACM, IRET

MPYS CLR IRACL ; 0 -» LSBs RESULT
CLR IRACM ; 0 -» MSBs RESULT

;SIGNED MULTIPLY AND ACCUMULATE SUBROUTINE:

; (IROP1 x TROP2L) + IRACM|IRACL -- IRACM|IRACL
MAC'S TST IROP1 ; MULTIPLICAND NEGATIVE ?

JGE L5001

SUB TROP2L, IRACM ; YES, CORRECT RESULT REGISTER
L5001 ST TROP2L ; MULTIPLIER NEGATIVE ?

JGE MACU

SUB TROPL, IRACM ; YES, CORRECT RESULT REGISTER

; THE REMAINING PART IS EQUAL TO THE UNSIGNED MULTIPLICATION

MACU CLR IROP2M ; MSBs MULTIPLIER
MOV #1, IRBT ; BIT TEST REGISTER
LS002 BIT IRBT, IROP1 ; TEST ACTUAL BIT
JZ L5011 ; IF 0: DO NOTHING
ADD IROP2L, TRACL ; IF 1: ADD MULTIPLIER TO RESULT
ADDC TROP2M, IRACM
LSO0L RLA IROP2L ; MULTIPLIER x 2
RLC IROP2M ;
RLA IRBT ; NEXT BIT TO TEST
JNC L$002 ; IF BIT IN CARRY: FINISHED
RET

5.1.3 Unsigned Multiplication 8 x 8 bits

The following subroutine performs an unsigned 8 x $-bit multiplication (label MPYUS) or
"Multiplication and Accumulation” (label MACUS). The multiplication subroutine clears
the result register IRACL before the start; the MACU subroutine adds the result of the
multiplication to the contents of the result register. The upper bytes of IROP1 and
IROP2L must be zero when the subroutine is called. The register use is shown below:
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15 0
| 00 l R9 lBitTest Register IRBT

| 00 r R4 l Multiplicand IROP1

[ 00 L RS I Multiplier IROP2L

[ R7 J Accumulated Result IRACL
Figure 5.2 S X S-bit Multiplication : Register use

; EXECUTION TIMES FOR REGISTERS USED (CYCLES @ 1MHZ) :

TASK ACUS8 MPYUS8 EXAMPLE
MINIMUM 58 59 000h x 000h = 00000h

; MEDIUM 62 63 0ASh x 05Ah = 03A02h

; MAXIMUM 66 67 OFFh x OFFh = OFEOlh
UNSIGNED BYTE MULTIPLY SUBROUTINE: IROPL x IROPZL - IRACL

; USED REGISTERS IROPl, IROP2L, IRACL, IRBT

MPYU8 CLR IRACL ; 0 -» RESULT
IMSTGNED BYTE MULTIPLY AND ACCUMULATE SUBROUTINE:
(TROP1 x IROP2L) +IRACL -- IRACL
MACUS8 MOV #1, IRBT ; BIT TEST REGISTER
L$002 BIT IRBT, IROP1 ; TEST ACTUAL BIT
Jz L$01 ; IF 0: DO NOTHING
ADD IROP2L, IRACL ; IF 1: ADD MULTIPLIER TO RESULT
L$S01 RLA IROP2L ; MULTIPLIER x 2
RLA.B IRBT ; NEXT BIT TO TEST
JNC L$002 ; IF BIT IN CARRY: FINISHED
RET

5.1.4 Signed Multiplication 8 x 8 bits

The following subroutine performs a signed 8 x 8-bit multiplication (label MPYSS) or
"Multiplication and Accumulation” (label MACSS). The multiplication subroutine clears
the result register IRACL before the start, the MACSS subroutine adds the result of the
multiplication to the contents of the result register. The register usage is the same as
with the unsigned 8 x 8 multiplication; Figure 5.2 is therefore also valid.

The part starting with label MACUS is the same as used with the unsigned multiplica-
tion.

; EXECUTION TIMES FOR REGISTER USED (CYCLES @ 1MHZ):
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MACSS8 MPYS8

EXAMPLE

; MAXIMUM
; GIGNED BYTE MULTIPLY SUBROUTINE:

USED REGISTERS

MPYS8

; SIGNED
(IROP1L

MACS8

LG101

THE REMAINING

MACUS8
L$002

L$01

CLR

64 65
76
86 87

IROP1, IROP2L,

IRACL

000h % 000h =
0ASh x 05Ah =
OFFh x OFFh =

TIRACL, IRBT

; 0 -» RESULT

0E00Zh
00001h

IROPL x IROPZL -> IRACL

BYTE MULTIPLY AND ACCUMULATE SUBROUTINE:

x TROPZ2L)

TST.B

JGE

SWPB

SUB

SWPB

TST.B

JGE

SWPB

SUB

SWPB

MOV
BIT
Jz

ADD
RLA

RLA.

JNC
RET

IROP1

L$101

TIROP2L
IROP2L, IRACL
IROP2L

TROP2L
MACUS8

IROPL
IROP1, IRACL
IROP1

#1, IRBT
IRBT, IROPL
L3001

IROP2L, IRACL
IROP2L

IRBT

L5002

5.1.5 Unsigned Division 32/16 bits

+IRACL -» IRACL

; MULTIPLICAND NEGATIVE ?

; NO

; YES, CORRECT RESULT

; RESTORE MULTIPLICATOR

; MULTIPLICATOR NEGATIVE ?

; YES, CORRECT RESULT

PART 1S THE UNSIGNED MULTIPLICATION

; BIT TEST REGISTER

; TEST ACTUAL

BIT

IF 0: DO NOTHING

; IF 1: ADD MULTIPLIER TO RESULT
; MULTIPLIER x 2

; NEXT BIT TO

TEST

; IF BIT IN CARRY: FINISHED

The subroutine performs an unsigned 32-bit by 16-bit division. If the result does not fit
into 16-bit, then the carry is set after return. If a valid result is obtained. then the carry
is reset after return. The register usage is shown in the next figure:

86
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r IROP2M l IROP2L J Dividend
Remainder 15 0
| IROP1 ] Divisor
| IRACL l Result
L IRBT J Counter
Figure 5.3: Unsigned Division: Register Use

DIVISION SUBROUTINE 32-bit BY 16-bit

H IROP2M|IROP2L : IROP1 -> IRACL REMAINDER IN IROP2M
RETURN: CARRY = 0: OK CARRY = 1: QUOTIENT » 16 BITS

DIVIDE CLR IRACL ; CLEAR RESULT

MOV #17, IRBT ; INITIALIZE CYCLE COUNTER
DIV1 CMP IROP1, IROP2M ;

JLO DIV2

SUB IROP1, IROP2M
DIV2 RLC IRACL

Jc DIV4

DEC IRBT ; Decrement cycle counter

JZ DIV4

RLA IROP2L

RLC IROP2M

JNC DIV1

SUB IROP1, IROP2M

SETC

JMP DIV2

DIV4 RET

5.1.6 Shift Routines

The results of the above subroutines (MPY, DIV) accumulated in IRACM/IRACL have to
be adapted to different numbers of bits after the decimal point, or because they are get-
ting too large to fit into 32 bits. The following subroutines can do these jobs. If other
numbers of shifting are necessary they may be constructed as shown for the 6-bit shifts.
No tests are made for overflow.

; Signed shift right subroutine for IRACM/IRACL
; Definitions see above

SHFTRS6 CALL #SHFTRS3 ; Shift 6 bits right signed
SHFTRS3 RRA IRACM ; Shift MSBs, bit0 -> carry
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RRC
RRA
RRC
RRA
RRC
RET

SHETRSZ

SHFTRS1

Unsigned shift

CHFTRU6  CALL
SHFTRUY  CLRC
RRC
RRC
CLRC
RRC
RRC
CLRC
RRC
RRC
RET

SHETRUZ

SHETRUL

IRACL
IRACM
IRACL
IRACM
IPACL

;

Shift LSEs,

carry

right subroutine for IRACM/IRACL

#SHETRUS

IRACM
TIRACL

IRACM
IRACL

IRACM
TRACL

; Signed/unsigned shift

SHFTL6O
SHETL3

CALL
RLA
RLC
RLA
RLC
RLA
RLC
RET

SHFTLZ

SHETLI

5.1.7 Square Root

#SHFTL 3

IRACL
IRACM
IRACL
IRACM
IRACL
IRACM

subroutine

shift 6 bits right
; Clear carry

bit0
ift

LSEs,

for

shift 6 bits
shift LSBs,
Shift MSBs,

carry,

carry

left
bit0
carry

-

u

IRACM/IRACL

bitls

nsigned

-~ bitld

bitls

carxy
bitl5s

The square root is often needed in computations. The following subroutine uses the
NEWTONIAN approximation for this problem. The number of iterations depends on the
length of the operand. The general formula is:

YAd=X

, 1 A
N =—1(m-1)X +——

= X

IForm = 2:
JA=X
y =ty A4
2 X

X =
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To caleulate VX, a division is necessary, which is done with the subroutine XDIV. The
result of this division has the same integer format as the divisor X,. This makes an casy
operation possible.

Ah EQU RR ;High word of A

Al EQU R9 ;Low word of A

XNh EQU R10 ;High word of result
XN1 EQU R11 ;Low word of result

;Square Root

;The valid range for the operand is from 0000.0002h to
;JFFF.ffffh

;EXAMPLE: SQR(2)=1.6a09h

; SQR(7fff . ffffh) = B5.04f3h

; SQR(0000.0002h) = 0.016ah

SOR CEQU $
mov Ah, XNh ;set X0 to A/2 for the first
mov Al, XN1 Japproximation
rra XNh ;X0=A,2
rrc XN1
SQR_1 call #XDIV ;R1I2xR13=A/Xn
add R13, XNl ;Xn+l=Xn+A/Xn
addc R12,XNh
rra XNh ;Xn+1=1/2(Xn+A/Xn)
rrc XN1
cmp XNh,R12 ;is high word of Xn+l = Xn
jne SQR_1 ;no, another approximation
cmp XN1,R13 ;yes, is low word of Xn+l = Xn
jne SQR_1 ;no, another approximation
SQR_3 ret ;ves, result is XNh.XN1

T T T T S e N T N N A

IS

; ~nded unsigned di on
iR8|R9 / R10|R1l = R12|R13, remainder is in R14|R15
N L T T

XDIV
push R8 ;save operands onto the stack
push R9
push R10
push R11
mov #48,R7 ;eounter=48
clr R1S ;clear remainder
clr R14
clr R12 ;clear result
clr R13
L$361 rla R9 ishift one bit of R8|R9 to R14|R15
rlc R8
rlc R15
rlc R14
cmp R10,R14 ;is subtraction necessary?
jlo L$364 ;no
jne L$363 ;yes
cmp R11,R15 ;R11=R15
jlo L$364 ;no
L$363 sub R11,R15 ;yes, subtract
subc R10,R14
L$364 rlc R13 ;shift result to R12|R13
rlc R12
dec R7 ;are 48 loops over ?
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jnz L$361 ;no

pop R11 ;yes, restore operands
pop R10

pop R9

pop R8

ret

5.1.8 Signed and unsigned 32-bit Compares

The following examples show optimized routines for the comparison of values longer
than 16 bits. They can be enlarged to any length (48 bit, 64 bit etc.).

Comparison for unsigned 32-bit numbers: R11|R12 with R13[R14

CMP R11,R13 ; Compare MSBs
JNE L$1 ; MSBs are not equal
CMP R12,R14 ; Equality: Compare LSBs too
L$1 JLO LO ; Jumps are used for MSBs and LSBs
JEQ EQUAL ;
e ; R13|R14 > R11,RI12
LO A ; R13{R14 < R11,R12
EQUAL ; R13|R14 = RI11,R12

The shown approach can be adapted to any number length; only additional comparisons
have Lo be added:

; Comparison for unsigned 48-bit numbers: R10|R11|R12 with
; RI3[RL4|R1S

CMP R10,R13 ; Compare MSBs

JNE L$1 ; MSBs are not equal

CMP R11,R14 ; Equality: Compare MSBs-1 too

JNE LS$1 ; MSBs-1 are not equal

CMP R12,R15 ; Equality: Compare LSBs too
LS$1 JLO LO ; Jumps are used for all words

JEQ EQUAL ;

L ; R13|R14|R15 > R10|R11,R12
LO R ; R13|R14|R15 < R1I0|R11,R12
EQUAL ; R13|R14|R15 = R10|R11,R12

; Comparison for signed 32-bit numbers: R11|R12 with R13|R14

CMP R11,R13 ; Compare MSBs signed
JLT LO ; R13 < R11
JNE HI : Not LO, not EQUAL: only HI rests
CMP R12,R14 ; Equality: Compare LSBs too
LS1 JLO LO ; LSBs use unsigned jumps!
JEQ EQUAL ; Not LO, not EQUAL: only HI rests
HI - ; R13|R14 > RI11,R12
LO e ; R1I3|R14 < R11,R12
EQUAL - ; R13|R14 = R11,R12

Comparison for signed 48-bit numbers: R10|R11|R12 with
R13|R14|R15

CMP R10,R13 ; Compare MSBs signed

JLT LO

JNE HI ; Not LO, not EQUAL: only HI rests
CMP R11,R14 ; Equality: Compare MSBs-1 too
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JNE L$1 ; MSBs-1 are not equal
CMP R12,R15 ; Equality: Compare LSBs too
L$1 JLO LO ; Used for MSBs-1 and LSBs
JEQ EQUAL ; Not LO, not EQUAL: only HI rests
HI ; R13|R14|R15 > R10|RI1Ll,RI12
LO ; R13|R14|R15 <« RI0|RIL,RI12
EQUAL ; R13|R14|R15 = RI10|RI1,RI12

5.1.9 Random Number Generation

The linear congruential method is used (introduced by D. Lehmer in 1951). The advan-
tages of this method are speed. simplicity to code, and case of use. However, if care is
not taken in choosing the multiplier and increment values, the results can quickly be-
come degenerate. This algorithm produces 65,536 unique numbers with very good cor-
relation. Therefore the random numbers repeat in the same sequence every 65,036,
Within this sequence only the LSB exhibits a repeatable pattern every 16 calls.

The linear congruential method has the following form:

1

Rucnum, = (ln’mlnum” X M("L’['] + INC(modM)

With: Rndnum, Current random number
Rndnum, Previous random number
MULT Multiplier (unique constant)
INC Increment (unique constant)
M Modulus (word width of MSP430 = 16 bits = 64K)

Much research has been done to identify the optimal choices for the constants MULT and
INC. The constant used in this implementation are based on this research. If changes are
made to these numbers. extreme care must be taken to avoid degeneration. Following is
a more detailed look at the algorithm and the numbers used:

M M is the modulus value and is typically defined by the word width of the
processor. The linear congruential algorithm will return a random number
between () and 65,535 and is NOT internally bounded. If the user requires a
min/max limit, this must be coded externally to this routine. The result is not
actually divided by 65,536. The result register is allowed to overflow, thus
implementing the modulus.

SEED The first random number in the sequence is called the seed value. This is an
arbitrary constant between 0 and 64K. Zero can be used, but the first two
results of the generator will be 0 and 1. This is OK if the code is allowed 3
calls to “warm up” before the numbers are taken seriously. The number
21,845 was used in this implementation because it is 1/3 of the modulus
(65,536).

MULT Based on random number theory, this number should be chosen such that
the last three digits are even-2-1(such as xx821, x421, etc.). The number
31,821 was used in this implementation.
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INC

Caution: the generator is extremely sensitive to the choice of this constant!
In general, this constant can be any prime number related to M. Two values
were actually tested in this implementation: 1 and 13,849, Research shows
that INC should be chosen based on the following formula:

IN(':(l-—(lxﬁ)ij
2 \6

(Using M=65536 leads to INC=13,849)

The following code deseribes the first equation. Three subroutines are used to generate
random numbers. Furthermore the initialization of corresponding constants and of a
RAM-variable storing the random number is included. The symbol names of the Ist equa-
tion are strictly used in the code underncath. The first time the initialization routine
INIRndnum must be catled. Then you can call the subroutine Rndum16 caleulating the
random numbers as often you want. The necessary code and the description of the sub-
routine MPYU can be found in “MSP430 Metering Application Guide, Unsigned Multipli-
cation 16 x 16-bit”.

; INITIALIZE CONSTANTS FOR RANDOM NUMBER GENERATION

SEED
MULT
INC

21845 ;Arbitrary seed value (65536/3)
31821 ;Multiplier value (last 3
;digits are even-2-1)
.set 13849 ;1 and 13849 have been tested

; ALLOCATION RANDOM NUMBER IN RAM ADDRESS 200h

.bss Rndnum, 2,0200h

; SUBROUTINE: INITIALIZE RANDOM NUMBER GENERATOR:
; LOAD THE SEED VALUE

INIRndnum .equ $

mov #SEED, Rndnum ; SEED is the first random number
ret ; This RET may be omitted

; SUBROUTINE: GENERATES NEXT RANDOM NUMBER

Rndnuml 6

.equ $
mov Rndnum, IROP2L ; Prepare multiplication
mov #MULT, IROP1 : Prepare multiplication
call #MPYU ; Call unsigned multiplication
add #INC, IRACL ; Add INC to low word of product

; Overwrite old random number with low word of new product

mov IRACL, Rndnum
ret

SUBROUTINE: UNSIGNED MULTIPLY ROUTINE 16 x 16 bits

See 5.1.1
MPYU CLR IRACL ;Start of multiplication
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Algorithm from "TMS320DSP Designer's Notebook Number 13 Random Number Genera-
tion on a TMS32005x". 7/94

5.1.10 Rules for the Integer Subroutines

Despite the fact that the subroutines shown above can only handle integer numbers it is
possible to use numbers with fractional parts. It is only necessary to define for cach
number where the "virtual" decimal point is located. Relatively simple rules define where
the decimal point is located for the result.

FFor caleulations with the integer subroutines it is almost impossible to remember where
the virtual decimal point is located. It is therefore a good programming style to indicate
in the comment part of the software listing where the decimal point is currently located.
The indication can have the following form:

NM

with:
N Worst case bit count of integer part (allows additional assessments)
M Number of bits after the virtual decimal point

The rules for determining the location of the decimal point are casy:

1. Addition and subtraction: Positions after the decimal point have to be equal. The posi-
tion is the same for the result.

2. Multiplication: Positions after the decimal point may be different. The two positions
are added to get the result's position.

3. Division: Positions after the decimal point may be different. The two positions are sub-
tracted to get the result's position. (Dividend - divisor)
LEXAMPLES:
First Operand Operation  Second Operand Result
NNN.MMM + NNNN.MMM NNNN.MMM
NNN.M X NN.MMM NNNNN.MMMM
NNN.MM - NN.MM NNN.MM
NNNN.MMMM : NN.MMM NN.M
NNN.M + NNNN.M NNNN.M
NNN.MM X NN.MMM VNNNN.MMMMM
NNN.M - NN.M NNN.M
NNNN.MMMMM : NN.M NN.MMMM

If two numbers have to be divided and the result should have n digits after the decimal
point, the dividend has to be loaded with the number shifted appropriately to the left and
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zeroes filled into the lower bits. The same procedure may be used if a smaller number is
to be divided by a larger one.
EXAMPLES for the division:

First Operand Operation  Second Operand Result
(shifted)
NNNN.OO0O : NN NN. MMM
NNNN.OOO : NN.M NN.MM
NNNN.OOO : N.MM NNN.M
0.MMMO00 : NN.M 0.MMMMM

EXAMPLLE for a source using the number indication:

MOV #01234h, IROP2L ; Constant 12.34 loaded 8.8
MOV R15, IROP1 ; Operand fetched 2.3

CALL #MPYS ; Signed MPY 10.11
CALL #SHFTRS3 ; Divide by 273 10.8
ADD #00678h, IRACL ; Add Constant 6.78 10.8
ADC IRACM ; Add carry 10.8

5.2 Table Processing

One of the development targets of the MSP430 was the capability to process tables. This
is due to the fact that software can be written more readably and functionally when us-
ing tables. The addressing modes, the instruction set and the word/byte strueture make
the MSP430 an excelient table processor. The arrangement of information in tables has

several advantages:

— Good visibility

— Simple changes: Enlargements and deletions are made casily
— Low software overhead: Short programs

— High speed: Fastest way to access data

Generally, two ways exist of arranging data in tables:

— Data is arranged in blocks, cach block containing the complete information of one
item

— Data is arranged in several tables, each table containing one or two kinds of informa-
tion for all items.
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e

Max. Pressure Max. Pressure Item O

MPY | EEPROM Item O

Offset Max. Pressure ltem n

Max. Pressure

MPY EEPROM Item O
MPY EEPROM Iltem 1

Offset

—_— MPY [ EEPROM Item n

Max. Pressure

Offset ltem O
MPY EEPROM ltem n
Offset
— Offset Item n
Block Arrangement of Data Data in several Tables
Figure 5.4 Data Arrangement in Blocks

EXAMPLE: A table arranged in blocks is shown. Some examples for random access are
given.

;Block Arrangement of a table

TABLE .WORD 2095 ; Maximum pressure item 0
TEEPR .BYTE 16 ; EEPROM start address
TMPY .BYTE 3 ; Multiply constant

TOFFS .WORD 01456h ; Offset correction value
TABN .WORD 3084 ; Maximum pressure item 1

.WORD 2010 ; Maximum pressure item N
.BYTE 37 ; EEPROM start address
.BYTE 3 ; Multiply constant

.WORD 00456h ; Offset correction value

Access examples for the above block arrangement:
R5 points to the 1lst word of a block (max. pressure)
Examples how to access the other values are given:

MOV @R5,R6 ; Copy max. pressure to R6
MOV.B TEEPR-TABLE (R5) ,R7 ;EEPROM start to R7
CMP.B TMPY-TABLE (R5) ,R8 ; Same constant as in R8?
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MOV &ADAT, R9 ; ADC result to E9
ADD TOFFS-TABLE (R5) ,F9 ; Correct ADC result
ADD #TABN-TABLE, RS ; Address next item's block

Copying of block arranged data to registers

MOV @R5+,R6 ; Copy max. pressure tc R
MOV.B @R5+,R7 ; EEPROM start to E7

MOV.B @R5+,R8 ; MPY constant to E8

MOV @RrR5+,R9 ; Offset to R9

RS points to next item's block now

; Arrangement of data in several tables

TMAX PR .WORD 2095 ; Maximum pressure item 0 .WORD
3084 ; Maximum pressure item |
. WORD 2010 ; Maximum pressure item N
TEEMPY .BYTE 16,3 ; EEPROM start, MPY constant
.BYTE 37,3 ; item 1
.BYTE 37,114 ; item N
TOFFS .WORD 01456h ; Offset correction value
.WORD 00456h ; item N

; Access examples for the above arrangement:
; RS contains the item number x 2
; Examples with identical functions as for

U 1 -
tne DiocxK

MOV TMAXPR (R5) ,R6 ; Copy max. pressure to R6
MOV.B TEEMPY (R5) , R/ ;EEPROM start to R7

CMF.B TMPY+1 (R5) ,R8 ; Same constant as in R8?
MOV &ADAT, R9 ; ADC result to R9

ADD TOFFS (R5) ,R9 ; Correct ADC result

INCD RS ; Address next item

5.2.1 Two dimensional Tables

Often the output value of a funetion depends on two (or more) input values. If there is no
algorithm for such a funetion, then a two (or more) dimensional table is needed. Exam-
ples of such funetions are:

— The entropy of water depends on the inlet temperature and the outlet temperature. An
approximation equation of the twelfth order is needed for this problem if no table is
used.

— The ignition angle of an Otto-motor depends on the throttle opening and the motor
revolutions per minute.

Figure 5.5 shows a function such as described. The output value T depends on the input
values X and Y.

96 *? TEXAS INSTRUMENTS



MSP430 Family Software Applications

Ym

AY

O\ | ax | Xm

Figure 5.5: Two-dimensional Funetion

A table contains the output values T for all crossing points of X and Y that have dis-
tances of AX and AY respectively. For every point in between these table points, the out-
put value can be caleulated.

TO1

Your \Y N : &\\

Yb \ \

Xa X Xa+1

Figure 5.6 Algorithm for two-dimensional Tables
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The calculation formulas are:

X-X X-X

MX)Y) = 220 (T, -T,)+T, = S—22x(T, -1

( ’ ;,) X” - X” X([m vm) an A Y X([’m Frm)+Tw
X-X

(XY, = (1, -T,)+1,

( /,.1) % ( m) 0

Y -Y,
f(X,)Y) = _ATX(/(X )= (FX V) + (X))

These formulas need division. There are two possible ways of avoiding the division:

— "To choose the values for AX and AY in such a way that simple shifts can do the divi-
sions (AX = 0.25, 0.5, 1, 2, 4 ete.)
— To use adapted output values 'T" within the table

m

lfall I

7 AXAY
This adaptation leads to:

f(X,Y,)

) X_; = (X ‘Yu ) X (T'\U'TIW ) + T"’“
ﬂ%7ﬁl4x-xgxum )+ T,

/.(AY,Y) _ (Y _ Y,’)X(,(‘YY r,q) f()i, r,)) f(‘Y )I;) % AY
AY AY AY

The output value {(X.Y) is calculable now with multiplications only.

EXAMPLE: A 2-dimensional table is given. AX and AY are chosen as multiples of 2. The
integer subroutines are used for the calculations
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NOTE
The software shown is not a generie example: it is tailored to the input
values given. If other AX and AY values are used then the adaptation
parts and masks have to be changed.

X Y Comment
Delta 2 4 AX and AY
Input value format 8.2 7.1 Bits before/after dee.point
Starting value 0 \] N, resp. Y,
kind value 12 a6 Ny resp. Yy
Input value (RAM, reg) Xix Yy Assembler mnemonic
Two dimensional table processing
XIN CEQU R15 ; unsigned X value, register or RAM
YIN .EQU R14 ; unsigned Y value, register or RAM
XM .EQU 42 ; Number of X rows
YN .EQU 56 ; Number of Y columns
XCL . EQU 7 ; Mask for fraction and dX
YCL .EQU 7 ; Mask for fraction and dy
XAYB .EQU R13 ; Rel. address of (XA,YB), register

ZCFLG .EQU 0 ; Flag: 0: 2-dim 1: 3-dimensional

Address definitions for the 4 table points:

TOO .EQU TABLE ;. (XA, YB) TABLE (XAYB)

TO1 -EQU TABLE+2 ; (XA,YB+1) TABLE+2 (XAYB)
T10 .EQU TABLE+ (YN*2) ; (XA+1,YB) TABLE+ (YN*2) (XAYB)

T11 .EQU TABLE+ (YN*2) +2 ; (XA+1,YB+1) TABLE+(YM*2)+2(XAYB)

Table tor two dimensional processing. Contents are signed
numbers.

TABLE .WORD 01015h,...073A7h ; (X0,Y0) (X0,Y1l)...(X0,YN)

.WORD 02222h,...08E21h ; (X1,Y0) (X1,Yl)...(X1,YN)
.WORD 0A730h,...068D1lh ; (XM,Y0) (XM,Y1l)...(XM,YN)

Table calculation software 2-dimensional. Approx. 700 cycles

Input value X in XIN, Input value Y in YIN
Result T in IRACL, same format as TABLE contents

Calculation of YB out of YIN. One less adaptation due to
word table. Relative address of (X0,YB) to IRACL

TABCALZ2 CLR IRACM ; 0 -> Hi result register
MOV YIN, IRACL ; Y -> Lo result register 7.1
RRA IRACL ; Shift out fraction part 7.0
RRA IRACL ; Adapt to 4y = 4 6.0
BIC #1, IRACL ; Word address needed

; Calculation of XA out of XIN. One less adaptation due to

; word table. Relative address of (XA,YB) to IRACL (T00)
MOV XIN, IROP1 ; X -> Multiplicand 8.2
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RRA
REA
BIC
MOV
CALL
MOV

JIF
ADD
.ENDIF
; Calceulation of
MOV
AND
MOV
SUB
CALL
CALL
ADD
PUSH

; Calculation of
; (XIN-XA) still

MOV
SUB
CALL
CALL
ADD

; Calculation of

MOV
AND
SUB
MOV
CALL
CALL
ADD
RET

IROP1
IROP1

#1, IROP1
#YN, IROP2L
#MACS
IRACL, XAYE

shift out fractio
Adapt to dX = 2

vlord address need
Max. Y (YN) to mu
Fel address (XA,Y
to storage regist

n part 8.1
8.0

ed

ltipl. 5.0

B) G

b
w oW

er 1

ZCFLG If 3-dimensional calculation
OFFZC, XAYB Add offset for actual table

; Rel. address of ZC
f(X,YB) = (XIN-XA)/d¥X = (T10-TOC) + TOO
XIN, IROP1 ; build (XIN - X&) 8.2
#XCL, IROPI ; Fraction and dX recsts 1.2
T10 (XAYB), IROP2L ; T10 -» IROPZL 16.0
TOO (XAYB) , TROP2L ; T10 TOO 16.0
#MPYS ; (XIN XA) (T10 - TOO) 17.2
#SHFTRS3 ; :dX, to integer 15.0
TOO (XAYB) , IRACL ; (XIN-XA) (T10-T00)+TOO0 15.0
TRACL ; Result on stack
f(X,YB+1) = (XIN-XA)/dX x (T11-TOl) + TOI
in IROPI
T11 (XAYB), IROP2L ; Tll --» TROPZL 16.0
TO1 (XAYB), IROP2L T11 - TOl 16.0
#MPYS ; (XIN - XA)(T1ll - TOl) 17.2
#SHFTRS3 ; :dX, to integer 15.0
TO1l (XAYB) , IRACL ; (XIN-XA) (T11-T01)+TO1L 15.0
f(X,Y) = (YIN-YB)/dY x (f(X,YB)-f(X,YB+l) + (X, ¥YB)
YIN, IROP1 ; build (YIN - XB 7.1
#YCL, IROP1 ; Fraction and dX rests 2.1
@SP, IRACL ; (X, YB+1)-f (X, YB) 16.0
IRACL, IROP2L ; Result to multiplier
#MPYS ; (YIN-YB) (f..-f..) 18.1
#SHFTRS3 ; :dY, to integer 16.0
@sP+, IRACL ; (YIN-YB) (f..-f..)+f.. 15.0

; Result T in IRACL 16.0

The table used with the example before uses unsigned values for X and Y (the upper left
table of figure 5.6a shows this). If X or Y or both are signed values then the structure of
the table and its entry point have to be changed. The following examples in figure 5.6a

show how to do that.
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YO YN Y-N-1 YO YN
X0 X0
XM XM
X unsigned Y unsigned X unsigned Y signed
B Locaton of Address TABLE
YO YN Y-N-1 YO YN
X-M-1 X-M-1
_ I X0
XM XM
X signed Y unsigned X signed Y signed
Figure 5.6a: Table Configuration for signed X and Y
The above tables are shown in assembler code:
X unsigned, Y unsigned
TABLE .WORD 01015h, ...073A7h (X0,Y0)...(X0,YN)
.WORD 02222h, ...08E21h (X1,Y0)...(X1,YN)
.WQRD 0A73h, ...068Dlh ;o (XM, Y0) ... (XM, YN)
; X unsigned, Y signed
.WORD 03017h, ...093A2h ; (X0,Y-N-1)...(X0,Y-1)
TABLE .WORD 02233h,...08721h ; (X0,Y0)...(X0,YN)
.WORD 03017h, ...093A2h ; (X1,Y-N-1)...(Xl,YN)
JWORD  00173h,...07851h ; (XM, Y-N-1) ... (XM,YN)
; X signed, Y unsigned
.WORD 03017h, ...093A2h ; (X-M-1,Y0)...(X-M-1,YN)
.WORD 08012h, ...0B3Clh ; (X-M,YO0)..... (X-M, YN)
.WORD 0401%h,...0D3A3h ; (X-1,Y0)...(X-1,YN)
TABLE .WORD 02233h,...08721h ; (X0,Y0)....(X0,¥YN)
.WORD 03017h, ...093A2h ; (X1,Y0)....(X1l,YN)
.WORD 00173h, ...07851h ; (XM,Y0).... (XM, YN)
; X signed, Y signed
.WORD 03017h, ...093A2h ; (X-M-1,Y-N-1) (X-M-1,YN)
.WORD 08012h,...0B3Clh ; (X-M,Y-N-1) .. (X-M, YN)
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"WORD  04019h,...0D3A3h ; (X-1,7-N-1)...(X-1,7N)

.WORD 02233h,...08721h ; (Z0,Y-N-1)....(X0,¥-1)
TABLE .WORD 02233h,...08721h ; (X0,Y0)....... (X0, YN)
.WORD 03017h,...093A2h ; (Z1,7-N-1)....(X1,¥N)
.V:J(-)RD 00173h,...0785lh ; (XM, Y-N-1).... (XM, YN)

The entry label TABLIS always points to the word or byte with the coordinates (X0,Y0).

5.2.2 Three dimensional Tables

If the output value depends on three input variables X, Y and 7, then a three dimensional
table is necessary for the erossing points. Kight values T0O0OO to T111 are used for the cal-
culation of the output value T.

The simplest way for the caleulation is to caleulate the output values for two two-

dimensional tables [(X,Y,7,) and [(X,Y,Z,,,) with the subroutine TABCALZ used for the
two-dimensional tables. The two results are used for the final calculation:

Z-4

[(X,\Y,Z)= C (XY, 2.,

) (M(X, Y, Z))+ (XY, Z)

’,

&N
l H Q
\:\

/]
ol ‘

The next figure shows this method: the output values T are caleulated for 7 and for 7, .
Out of these two output values the final value is calculated.

To010 X Yo+t Zee1)

hxv}m‘:
\ o ;7 To01 AN

f(X,Yb+1.2¢)
To1
TN

1(X.Y.2)

fX.Y.Z¢) HX.Y.Zc+1)

Zc P4 Ze+t

Algorithm for a three-dimensional Table
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EXAMPLE: A 3-dimensional table is given. AX and AY and AZ are chosen as multiples of
2. The integer subroutines are used for caleulations.

X Y 7
Delta 2 4 256 AN, AY, AZ
Input value format 8.2 71 0 Bits after dee.point
Starting value 0 0 0 No Yoo 7
End value 42 D6 214 Xy Yo 7
Input value (RAM, reg) XIN YIN 7ZIN Assembler mnemonie
XIN .EQU R15 ; unsigned X value, register or RAM
YIN .EQU R14 ; unsigned Y value, register or RAM
ZIN .EQU R13 ; unsigned Z value, register or RAM
XM .EQU 2 ; Number of X rows
YN .EQU 56 ; Number of Y columns
XCL .EQU 7 ; Mask for fraction and dx
YCL .EQU 7 ; Mask for fraction and dy
ZCL . EQU OFFh ; Mask for delta?Zz
XAYB .EQU R12 ; Rel. address of (XA,YB), register
ZCFLG .EQU 1 ; Flag: 0: 2-dim 1: 3 -dimensional
OFFZC .EQU R11 ; Relative offset to actual (X0,Y0,2zC)
Three dimensional table
TABL3D .WORD 01015h, ...073A7h ; (X0,Y0,20)...(X0,YN,Z0)
:WORD 02222h, ...08E21h ; (XM, Y0,20)... (XM, YN, Z0)
.WORD 0A730h, ...068Dlh ; (X0,Y0,Zl)...(X0,¥YN,21)
.WORD 010A5h, ...09BA7h ; (XM, Y0,Z1)...(XM,YN,Zl)
.WORD GZBCZh, ...08E4lh ; (X0,YU,%P)...(X0,YN,ZP)
.WORD 0A980h, ...023Dlh ; (XM,YO0,ZP)...(XM,YN,ZP)

; Table calculation software 3-dimensional
; Inmput values: X in XIN, Y in YIN, Z in ZIN
; Result is located in IRACL, same format as TABLE content

Calculation of ZC out of ZIN. One less adaptation due to
word table.

TABCAL3 MOV ZIN, IROP1 ; 2 -> Operand register 14.0

SWPB IROP1 ; Use only upper byte (dZ =256)
MOV.B IROP1, IROP1 ; Adapt to dz = 256 6.0

; Calculation of relative address of (X0,Y0,ZC) to IRACL
; Corrected for word table

MOV #YN*2*XM, IROP2L ; Table length for dz
CALL #MPYU ; Rel address (X0,Y0,2C) 13.0
MOV IRACL, OFFZC ; to storage register 13.0

; Calculation of f(X,Y,2C): The table block for ZC is used

CALL #TABCAL2 ; £(X,Y,2C) -> IRACL 16.0
PUSH IRACL ; Save f(X,Y,ZC)

; Calculation of f(X,Y,ZC+1l): The table block for ZC+l is used
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ADD #YN*2*¥M,OFFZC rel. adress (X0,70,2C+1)

CALL #TABCALZ f(£,7,2C+1) -> IRACL 16.¢C
Calculation of £(X,7,2)

MOV ZIN, IROPL build (YIN XB 6.8

AND #7CL, IROP1L Fraction and dZ rests 0.8

SUB @Sp, IRACL f(Z,Y,z2C+1)-£(X,7,2C) 16.0

MOV IRACL, TRPOPZL Result to multiplier

CALL #MPY S (ZIN-2C) (£..-£..) 16.8

CALL #SHETRS6 ; :dZ, to integer 16.2 CALL

#SHFTRSG2 H 16.0

ADD @5P+, IRACL ; (ZIN-ZC) (f..-f£..)+£.. 15.0

RET ; Result in IRACL

5.3 Signal Averaging and Noise Cancellation

I the measured signals contain noise, spikes and other not wanted signal components
then it is necessary to average the ADC results. Four different methods are mentioned
here:

1. Oversampling: Several measurements are added-up and the accumulated sum is used
for the caleulations.
2. Continuous Averaging: A cireular buffer is used for the measured samples. With every
new sample a new average value can be caleulated.
3. Weighted summation: The old value and the new one are added together and are then
halved.
1. Wave Digital Filtering: Complex filter algorithms that need only small caleulation
power are usced for the signal conditioning.
. Rejeetion of Extremes: the largest and the smallest sample are rejected from the
measured values and the remaining ones added-up and averaged.

The advantages and disadvantages of the different methods are shown in the apper-
taining sections.

5.3.1 Oversampling

Oversampling is the most simple method for the averaging of measurement results: N
samples are added-up and the accumulated sum is divided by N afterwards (in time). or
is used as it is with the next algorithm steps. It is only necessary to remember that the
added-up value is N-times too large. For example the formula below used for a single
measurement needs to be modified if N samples are summed-up as shown:

, _ X(Slopex ADC + Offset)

arersiaple vV
M

=Slopex ADC + Offset =)

norial

ENXAMPLE: N measurements have to be summed-up in SUM and SUM+2. The number N
is defined in R6
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.EQU R4 LSBs of sum

.EQU RS MSRs of sum

CLR SUMLO ;o Init of registers

CLR SUMHI

MOV #16,R6 ; Sum-up le samples of the ADC
C CALL #MEASURE ; Result in ADAT

ADD &ADAT, SUMLO ; LSD of accumulated sum

ADC SUMHI ; MSD

DEC R6& ; Decr. N counter: 0 reached?

JINZ QVSLOP

;o Yes, 16 samples in SUMHI |.‘1UMIM

Disadvantages: - High current consumption due to number of ADC conversions
- Low suppression of spikes ete. (by N)
Advantages: - Simple programming

5.3.2 Continuous Averaging

Avery simple and fast way for averaging digital signals is "Continuous Averaging”: A ¢ir-
cular buffer is fed at one end with the newest sample and the oldest sample is deleted at
the other end (both items share the same RAM location). To reduce the caleulating time,
the oldest sample is subtracted from the actual sum and the new sample is added to the
sum. The actual sum (a 32-bit value containing n samples) is used by the background: for
calculations it is only necessary to remember that it contains the N samples. The same
rule is valid as with oversampling.

The characteristic of this averaging is similar to a "Comb Filter" with relatively good
suppression of frequencies that are integral multiples of the scanning frequency. The
frequency behaviour is shown in the next figure:

T —

00625 0125 025 05 Input Frequ
210 Scan Frequ
.20 4
-30
-40 1

|

Attenuation dB

Figure 5.8: Frequency Response of the Continuous Averaging Filter

Disadvantages: — RAM allocation. N words are needed for the circular buffer
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Advantages: — Low current consumption due to one measurement only
— Fast update of buffer
Good suppression of certain frequencies (multiples of scan fre-
quency)
Low pass filter characteristic

|

[XXAMPLE: An interrupt driven routine (e.g. from the ADC which is started by the Basic
Timer) is shown that updates a circular buffer with N items. The actual sum CFSUM is
calculated by subtracting of the oldest sample and adding of the newest one. CFSUM and
CFSUM+2 contain the sum of the latest N samples.

N .EQU 16 ; Circular buffer with N items

.BSS CFSTRT,N*2 ; Address of lst item

.BSS CFSUM, 4 ; Accumulated sum 32 bits

.BSS CFPOI, 2 ; Points to next (= oldest) item
CFHND PUSH R5 ; Save RS

MOV CFPOI, RS ; Actual address to RS

CMP #CFSTRT+ (N*2) ,R5 ; Outside circ. buffer?

JLO L$300 ; No

MOV #CFSTRT, RS ; Yes, reset pointer

; The oldest item is subtracted from the sum. The newest item
; overwrites the oldest one and is added to the sum

L$300 SUB @RS, CFSUM ; Subtract oldest item from CFSUM
SBC CFSUM+2
MOV &ADAT, 0 (RS) ; Move latest item to buffer
ADD @RS+, CFSUM ; Add latest ADC result to CFSUM
ADC CFSUM+2
MOV R5,CFPOI ; Update pointer
POP RS ; Restore R5
RETI

5.3.3 Weighted Summation

The weighted sum of the measurements before and the actual measurement result are
added and then divided by two. This gives every measurement a certain weight:

Measurement at t: 0.5 Actual measurement

Measurement t, - At: 0.25 Last measurement

Measurement t, - 2At: 0.125

Measurement t, - 3At: 0.0625

Measurement t, - 4At: 0.03125

Measurement t, - nAt: 2 n

ete.

Disadvantages: - Suppression of spikes not sufficient (factor 2 only for actual sam-
ple)

Advantages: — Low current consumption due to one measurement only

— Low pass filter characteristic
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- Very short code
- Only one RAM word needed

EXAMPLE: The update of the actual sum WSSUM is shown.

i

.BSS WSSUM, 2 ; Accumulated weighted sum
WSHND ADD &ADAT, WSSUM ; Add current measurement to sum

RRA WSSUM ; New sum divided by 2
; Continue with value in WSSUM

5.3.4 Wave Digital Filtering
Wave Digital Filters (WDFs) have notable advantages:

- Excellent stability properties even under nonlincar operating conditions resulting
from overflow and roundoff effects

— Low coefficient wordlength requirements

- Inherently good dynamic range

- Stability under looped conditions

Compared with the often used averaging of measured sensor data, the digital filtering
has advantages: Lowpass filtering with sharp cut-off region, notceh filtering of noise, ...

For the design of Wave Digital Filter algorithms specialized CAD programs have been
designed in order to speed-up the top-down design from filter specification to the ma-
chine program for the processor:

- LWDF_DESIGN allows the design of Lattice-WDFs

- LWDF_COMP transforms a Lattice-WDF structure into an assembler program for the
MSP430

— DSP430 allows fast transient simulations of the filter algorithms on a model of the
MSP430, analysis of frequency response, check of accuracy and stability proof.

The programs enable the users of the MSP430 to solve special measurement problems
by means of robust digital filter algorithms.

A complete description of the WDF algorithms and development tools will be given in the
"TEXAS INSTRUMENTS Technical Journal” November/December 1994.

Disadvantages: ~ Complex algorithm. Support software needed for finding algorithm
— Low current consumption due to one measurement only per time
slice
Advantages: — Good attenuation inside stopband

— Good dynamic stability
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5.3.5 Rejection of Extremes

This averaging method measures (N+2) ADC-samples and rejects the largest and the
smallest values. The remaining N samples are added-up and the accumulated sum is di-
vided by N afterwards or is used as it is with the next algorithm steps. It is only neces-
sary to remember that the added-up value is N-times too large.

Disadvantages:  — Current consumption due to (N+2) ADC conversions
Advantages: — Simple programming

Very good suppression of spikes (extremes are rejected)
— Low RAM needs (4 words)

The software example below adds six ADC samples, subtracts the two extremes and re-
turns with the sum of the four medium samples. The constant N may be changed to any
number, but the summing-up buffer SESUM needs two words if N exceeds two. [tis an
advantage to use powers of two for N due to the simple division if needed (right shilts
only). Register use is possible too for SESUM, SEHI and SELO.

N .EQU 4 ; Sample count used -2
LIF N->2
SS SESUM, 4 ; Summing-up buffer
.ELSE ;
.BSS SESUM, 2 ; Na=2
.ENDIF
.BSS SEHI, 2 ; Largest ADC result
.BSS SELO, 2 ; Smallest ADC result
.BSS SECNT, 2 ; Counter for N+2
SEHND CLR SESUM ; Initialize buffers
MOV #N+2, SECNT ; Sample count +2 to counter
MOV #0FFFFh, SELO ; ADCmax -> SELO
CLR SEHI ; ADCmin -»> SEHI

; N+2 measurements are made and summed-up in SESUM

SELOOP CALL #MEASURE ; ADC result to &ADAT
MOV &ADAT,RS ; Copy ADC result to R5
ADD R5, SESUM
.IF N>2 ; Use 2nd sum buffer if N>2
ADDC SESUM+2
ENDIF
CMP R5, SEHI ; Result > SEHI?
JHS L$1 ; No
MOV R5, SEHI ; Yes, actualize SEHI
LSl CMP R5, SELO ; Result < SELO?
JLO L$2 ; No
MOV R5, SELO
L$2 DEC SECNT ; Counter - 1
JINZ SELOOP ; N+2 not yet reached

; N+2 measurements are made, extremes are subtracted now
from summed-up result. Return with N-times value in SESUM

SUB SELO, SESUM ; Subtract lowest result
. IF N>2 ; Necessary 1if N»>2

SBC SESUM+2

.ENDIF

SUB SEHI, SESUM ; Subtract highest result
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IR N>2 ; Necessary if N>2
SBC SESUM+2

.ENDIF

RET

5.3.6 Synchronization of the Measurement to Hum

[l'hum plays a role during measurements then a synehronization to the power frequency
may help to overcome this problem. Fig. 5.8.1 shows the influence of the mains voltage
during the measurement of a single sensor. The necessary number of measurements
(here 10) is split into two equal parts, the second part is measured after exaetly one half
of the period Ty, of the power frequeney. The hum introduced to the two parts is equal
but has different signs. Therefore the accumulated influence (the sum) is nearly zero.

Mans Votage
/2 Meas
vi
- ]

1/

Tmain/z hme

Figure 5.8.1:  Reduction of Hum by Synchronizing to the Power Frequeney. Single
Measurement

If the Basic Timer is used for the timing then the following numbers of Basic Timer inter-
rupts can be used:

Power Fre- Basic Timer Number of BT  Time Error e, Residual Error
quency f_ . Frequency f, Interrupts k max. €, max.

50 Hz 4096 Hz 41 0.097% 0.61%)

60 Hz 2048 Hz 17 039%  -2.45%

The formulas to get the above errors are:

e, = ~Q-><2lc—1 x 100

i
MALN
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m
. (T,
e, =sin| = x 2k x 2 | x 100
MAIN
with: c, Maximum time error due to fixed Basic Timer frequency in per cent
e Maximum remaining influence of the hum in per cent compared to a

measurement without hum cancellation

Ty Period of Basic Timer frequency (1/1,)
Tya Period of mains (1/fy,,.)
k Number of Basic Timer interrupts to reach Ty, /2 resp. Ty«

If difference measurements are used, the two measurements to be subtracted should be
made with a delay of exactly one mains period: both measurements have the same influ-
ence from the hum and the result, the difference of both measurements, does not show
the error. This measurement method is used with heat meters, where the temperature
difference of the water inlet and the water outlet is used for calculations.

] U .
Mains Voltage
n/2 Meas n/2 Meas

\

Figure 5.8.2:  Reduction of Hum by Synchronizing to the Power Frequency. Differential
Measurement

Vi

If the Basic Timer is used for the timing then the following numbers of Basic Timer inter-
rupts can be used:

Power Fre- Basic  Timer Number of In- Time Error e, Residual Error e,
quency f .. Frequency f,,.  terrupts k max. max.

50 Hz 2048 Hz 41 0.097% 0.61%

60 Hz, 1024 Hz 17 -0.39% -2.45%

The formulas to get the above results are:

e, = 7{1"’" xk—1]x100

MALN
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’, :sin[ixkxmrjx 100

MALN

The software needed for the modification of the Basie Timer frequeney without the loss
of the exact time base is shown in chapter "Change of Basice Timer Frequeney”

5.4 Basic Timer Usage

The Basie Timer is normally used as a time base: it is programmed to interrupt the
background program at regular time intervals. The following table shows all possible
Basic Timer interrupt frequencies in dependence of the control word bits. The values are
shown for MCLK = 1.048 MHz:

SSEL =0 SSEL =1
P2 1P1 1PO DIV =0 DIV =1 DIV =0 DIV =1
0 0 0 1634 Hz 64 Hz (024288 Hz) 64 Hz
0 0 1 8192 Hz 32 Hz (262144 Hz) 32 Hz
0 1 0 4096 Hz 16 Hz (131072 Hz) 16 Hz
0 1 1 2048 Hz 8 Hz (65536 Hz) 8 Hz
1 0 0 1024 Hz 4 Hz 32768 Hz 4 Hz
1 0 1 012 Hz 2 Hz 16348 Hz 2 Hz
1 1 0 256 Hz 1 Hz 8192 Hz 1 Hz
1 1 1 128 Hz 0.5 Hz 4096 Hz 0.5 Hz

The interrupt frequencies in brackets cannot be used by interrupt routines: the frequen-
cies are too high.

DEFINITION PART FOR THE BASIC TIMER

BTDAT . EQU 041h ; BT DATA REGISTER (0.5s)
BTCTL .EQU 040h ; BASIC TIMER CONTROL BYTE:
SSEL .EQU 080h ; 0: ACLK 1: MCLK
RESET .EQU 040h ; 0: RUN 1: RESET BT
DIV .EQU 020h ; 0: fBT1=fBT 1: fBT1=128 Hz
FRFQ .EQU 008h ; LCD FREQUENCY DIVIDER
Ip .EQU 001h ; BT FREQUENCY Selection bits
ME2 .EQU 005h ; MODULE ENABLE BYTE 2:
BTME .EQU 080h ; BT MODULE ENABLE BIT
IE2 . EQU 001lh ; INTERRUPT ENABLE BYTE 2:
BTIE .EQU 080h ; BT INTERRUPT ENABLE BIT
.BSS TIMER,4 ; 0.5s COUNTER
.BSS BTDTOL, 1 ; LAST READ BT VALUE

INITIALIZATION FOR 1 SECOND TIMING: 32768:(256x128)=1

Input frequency ACLK: SSEL = 0
Input division by 256: DIV = 1
Add. input division by 128: IP = 6
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LCD frequency = 128 Hz: FRFQ = 3

; Initialization part

HLD . EQU 040h ; 1: Disable BT
MOV.B #(DIV+ (6*IP)+ (Z*FRFQ) ), &BTCTL ;o ls
BIS.B #BTIE, &1E2 ; ENABLE INTRPT BASIC TIMER

; INTERRUPT HANDLER BAZIC TIMER
The register BTDAT needs to be read twice

BTHAN PUSH RS ; SAVE USED REGISTEF

L5300 MOV .B &BTDAT, RS ; READ ACTUAL TIMEFR VALUE
CMP.B &BTDAT, RS ; ENSURE DATA INTEGRITY
JNE L$300 ; READ AGATIN IF NOT EQUAL

R5 CONTAINS ACTUAL TIMER VALUE, BTDTOL CONTAINS LAST VALUE
; READ. THE DIFFERENCE IS ADDED TO THE 15 COUNTER

PUSH.B BTDTOL ; SAVE LAST TIMER VALUE

MOV.B RS, BTDTOL ; ACTUAL VALUE -- LAST VALUE
SUB.B @SP+, RS ; ACTUAL - LAST VALUE -- RS
ADD RS, TIMER ; 16-bit DIFFERENCE TO COUNTER
ADC TIMER+2 ; Carry to high word

POP RS ; Restore RS

RETI

.SECT "Int_Vect",O0FFE2h

.WORD BTHAN ; Basic Timer Interrupt Vector

5.4.1 Change of Basic Timer Frequency

If the Basice Timer is used as a time base (for example as a base for a clock) then it is
neeessary {o do something if the frequeney is changed during the normal run. The neces-
sary operations are different for changing from a faster frequency to a slower one than
for the reverse operation. The timer register where the interrupts are counted needs to
be implemented for the highest used Basie Timer frequency.

Slow to fast change: The change should be done only inside the Basic Timer interrupt
routine. The status is to be changed to the new time value.

Ifast to slow change: The change should only be done inside the Basice Timer interrupt
routine. Afterwards all bits of the software timer register which represent the higher Ba-
sie Timer frequencies should be reset to zero. This is the correet time for the lower fre-
quency.

EXAMPLE: A Basic Timer interrupt handler is shown that works with two frequencies.
1 Hz and 8 Hz. All necessary status routines are shown. The handler may be used for all
other possible frequency combinations

HIF .EQU 8 ; Hi frequency is 8 Hz

LOF .EQU 1 ; Lo frequency is 1 Hz

LOBIT .EQU HIF/LOF ; Bit position of low frequency
.BSS TIMER, 2 ; 16-bit timer register
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.BSS BTSTAT, 1 ; Status byte
BT_INT RS ; Save RS
BTSTAT, RS ; RS contains status (0, 2, 4, ©)
BTTAR (R5) ; Got to appropr. routine
BTTABR BT1HZ ; STO: 1 Hz interrupt
BT8HZ ; ST2: 8 Hz interrupt
CHGTS8 ; ST4: Change to 8 Hz interrupt
.WORD CHGT1 ; ST6: Change to 1 Hz interrupt
ETIHZ ADD #LOBIT, TIMER ; Incr. bit 3 of the 125 ms timer
POP RS
RETI ; No change of status
BTHHZ INC TIMER ; Incr. bit 0 of the 125 ms timer
POP RS
RETI ; No change of status
CHGTR MOV.B #2, BTSTAT ; Change to 8 Hz interrupt
POP RS ; New status: 8 Hz interrupt
RETI
CHGTL BIC #LOBIT-1, TIMER ; Set 8 Hz bits to zero
MOV.B #0,BTSTAT ; New status: 1 Hz interrupt
POP R5
RETI

.SECT "Int _Vect",O0FFEZ2h

.WORD BT_INT Rasic Timer Interrupt Vector

5.4.2 Elimination of the Quartz Crystal Tolerance

For normal measurement purposes the acceuracy of 32768 Hz quartz crystals is more
than sufficient. But if highly accurate timing has to be maintained for years, then it is
necessary to know the frequencey deviation of the quartz erystal used (tlogether with the
oscillator) from the exacet frequeney. An example for such an application is an electricity
meter which has to switch the tariff at given times each day without any possibility of
syvnchronizing the internal timer.

The time deviations for two quartz crystal accuracies (21 Hz and £10 ppm) are shown in
the table below. It shows how long it takes to have a certain time error:

Accuracy Deviation 1 s " Deviation +1 m Deviation £1 h
32768 Hz £ 1 Hz 9.10 hours 22.75 days 3.74 years
32768 Hz + 10 ppm 27.77 hours 69.44 days 11.40 years

If these time deviations are not tolerable then a calibration and correction are neces-
sary:

1. The quartz crystal frequency is measured and the deviation stored in the RAM or
EEPROM. All other interrupts have to be disabled during this measurement to get cor-
rect results.

2. The measured time deviation of the quartz crystal is used for a correction that takes
place at regular time intervals.
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The quartz crystal frequency can be measured during the calibration with a timing sig-
nal of exactly 10 or 16 seconds at one of the ports with interrupt capability. The MSP430
counts its internal oscillator frequency ACLK during this time with one of the timers
(%-bit timer or 16-bit timer) and gets the deviation to 32768 Hz. The deviation measured
is added at appropriate time intervals (32768s x10 or 327685 x 16) to the timer register
which counts the seconds.

32kHz +-nHz

il

= e P3560

0 Ox —Clk
MSP430 EEPROM
Temperature POy Data
Calibration AGND
PO.x
Unit Vee  Vss
l—10s > 3V/9uA
IYigure H.9: Calibration of the Quartz Crystal

If necessary the temperature behaviour of the quartz erystal can also be taken into ac-
count. The next figure shows the typical dependence of a quartz crystal in relation to its
temperature. The nominal frequencey is present at one temperature T, (turning point):
above and below this temperature the frequency is always lower (negative temperature
coefficient). Beside the turning point the frequeney deviation inereases with the square
of the temperature deviation (-0.035 ppm/°(‘2 for the example).

To-10 To To+10

—_—
-35 Quartz Temp. C

|

Frequency
Deviation

ppm

Figure 5.10: Quartz Crystal Frequeney Deviation with Temperature
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The quadratie equation that desceribes this temperature behavior is approximately (T, =
+19°C):

Af = —0035%x(T -19)°
with: Af Frequeney deviation in ppm
T Quartz erystal temperature in °C

To use the above equation simply every hour the quartz erystal temperature (°C board
temperature) is measured and the frequeney deviation computed. These deviations are
added-up until an accumulated deviation of one second is reached: the counter for see-
onds is then ineremented by one and one second is subtracted from the accumulated de-
viation, leaving the remainder in the accumulation register.

EXAMPLE: Quadratic quartz cerystal deviation correetion. The quartz crystal's tempera-
ture is measured each hour (3600s) and computed. The result in ppm/1024 is added-up in
RAM location PPMS. If PPMS reaches 1024 one second is added to the seconds counter
SECONDS and PPMS is reduced by 1024. The numbers at the right margin show the dig-
its before and after the assumed decimal point.

; Quadratic temperature compensation after each hour:

tcorr = -|(T-19)72 x -0.035 ppm| x t
Tmax = To+40C, Tmin = To-40C

To .SET 19 ; Turning point of temperature

PPM .SET 35 ; -0.035 ppm/(T-To) "2
.BSS PPMS, 2 ; RAM word for adding-up deviation
.BSS SECOND, 2 ; RAM word for seconds counting

TIMCORR CALL #MEASTEMP ;Measure quartz temperature 6.4h
POP IROP2L ; Result to IROP2L 6.4h
SUB #(To*10h),IROP2L ; T - Tou 6.4h
MOV IROPZL, IROP1 ; Copy result
CALL #MPYS i |T-To|"2 (always pos.) 12.8
CALL #SHFTRS6 ; Adapt |T-To|"2 12.2
ADC IRACL ; Rounding
MOV IRACL, IROP2L i |T-To|"2 -> TROP2L 12.2

; tcorr = 3600 x -0.035 x 1lE-6 x (T-19)"2 s/h

L$006 MOV #(36*PPM) , IROP1 ; 36 x PPM/1E4 ms/h
CALL #MPYS ; Signed multiplication

; IRAC contains: 36s x PPM x 4 (To-T)"2 x 1E-7 s/h

; = 36s x PPM x 4 (To-T)"2 x 1lE-4 ms/h

ms/h

CALL #SHFTLS6 ; to IRACM

; IRACM contains: tcorr = 4 x dT x 36 x PPM/1024
; Correction: 0.25 x 1E-7 x 1024 = 1/39062.5
ADD IRACM, PPMS ; Add-up deviation
CMP #39062, PPMS ; One second deviation reached?
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L5200

JLO

INC
S5UB

RETS

L$200
SECONDS ; Yes, add one second
#39062, PPMS ; and adjust deviation counter

5.4.3 Clock Subroutines

The following two subroutines provide

24-hour clocks: one using decimal counting

(RTCLKD) and one using hexadecimal counting (RTCLK). These subroutines are called
every second from the Basie Timer handler. They may be enlarged to include the date

casily.

SEC .EQU 0200H ;

MIN .EQU 0201H ;
0202H ;

HOURS L EQU

RTCLED SETC
DADC . B SEC

CMP.B #060H, SEC
JLO RTRETD
CLR.B SEC

DADC . B MIN

CMP.B #060H, MIN
JLO RTRETD
CLR.B MIN

DADC . B HOURS

CMP . B #024H, HOURS
JLO RTRETD
CLR.B HOURS

RTRETD RET

Subroutine provides a hex clock:

RTCLK INC.B SEC
CMP.B #60, SEC
JLO RTRET
CLR.B SEC
INC.B MIN
CMP.B #60, MIN
JLO RTRET
CLR.B MIN
INC.B HOURS
CMP.B #24, HOURS
JLO RTRET
CLR.B HOURS

RTRET RET

Subroutine provides a decimal clock:

for counting of seconds
Byte for counting of minutes
for counting of hours

00.00.00 to 23.59.59

Entry every second
Increment seconds

One minute elapsed?

No, return (C = 0)

Yes, clear seconds (C = 1)
Increment minutes with set

00.00.00
Return to caller

00.00.00 to 17.3B.3B

Entry point every second
Increment seconds

One minute elapsed?

No, return to caller
Yes, clear seconds
Increment minutes

00.00.00

carry
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5.5 General Purpose Subroutines

Following tested software examples are shown which may be of help during software de-
velopment. The examples may not fit into any application, but they can be modified to
the user's needs.

5.5.1 Initialization

FFor the first power-on it is necessary to elear the internal RAM to get a defined basis, 1f
the MSPA30 is battery powered and contains calibration factors or other important data
inits RAM, it is necessary to distinguish between Cold Start and Warm Start. The reason
is the possibility of initializations caused by electromagnetic interference (EMD. 1f such
an erroneous initialization is not checked for legality, EMI influenee could destroy the
RAM content by clearing the RAM with the initialization software routine. Testing can be
made by comparing RAM bytes with known content to their nominal value. These RAM
bytes could be identification codes or extra written test patterns (e.g. Adh, FOh). If the
tested RAM locations contain the right pattern, a spurious signal causes the initializa-
tion and the normal program can continue. If the tested RAM bytes differ from the nomi-
nal value, the RAM content is destroyved (e.g. by loss of power) and the initialization
routine is invoked: the RAM is cleared and the peripherals are initialized.

The Cold Start software contains the waiting loop for the DCO which is needed o set it to
the correet frequencey. See chapter 1.4 "Use of the System Clock Generator”.

Initialization part: Check if Cold Start or Warm Start:
RAM location 0200h decides kind of initialization:

Cold Start: content differs from 0ASFOh

Jarm Start: content is 0ASFOh

INIT CMP #0ASFOh, &0200h ; Test content of &200h
JEQ EMIINI ; Correct content: No reset

; Control RAM content differs from OASFO: RAM needs to be
cleared, peripherals needs to be initialized

CALL #RAMCLR ; Clear complete RAM
MOV #0ASFOh, &0200h ; Insert test word

; Waiting loop for the DCO of the FLL to settle: 130 ms

CLR RS ;2 x 65536 us = 131 ms
LS$1 INC RS
JNZ L$1

; EMI caused initialization: Periphery needs to be initialized:
; Interrupts need to be enabled again

EMINI

5.5.2 RAM clearing Routine
; Definitions for the RAM block (depend on MSP430 type)

RAMSTRT .EQU 0200h ;Start of RAM
RAMEND .EQU 02FFh ; Last RAM address
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subroutine for the clearing of the RAM block

RAMCLR CLR R4 ; Prepare index register
RCL CLR.B RAMSTRT (R4) ; lst RAM address
INC R4 ; Next address
CMP #RAMEND-RAMSTRT+1, R4 ; RAM cleared?
JLO RCL ; No, once more
RET ; Yes, return

5.5.3 Binary to BCD Conversion

The conversion of binary to BCD and vice versa is normally a time consuming task: five
divisions by ten are necessary to convert a 16-bit binary number to BCD. The DADD in-
struction reduces this to a loop with five instructions.

; THE BINARY NUMBER IN R12 IS CONVERTED TO A S5-DIGIT BCD
; NUMBER CONTAINED IN R14 AND R13: Rld[RlS

BINDEC MOV #16,R15 ; LOOP COUNTER
CLR R14 ; 0 -> RESULT MSD
CLR R13 ; 0 -» RESULT LSD
LS1 RLA R12 ; Binary MSBE to carry
DADD R13,R13 ; RESULT x2 LSD
DADD R14,R14 ; MSD
DEC R15 ; THROUGH?
JNZ L$1
RET ; YES, RESULT IN Rl41Rl3

The above subroutine may be enlarged to any length of the binary part simply by adding
of registers for the storage of the BCD number (a binary number with n bits needs ap-
prox. 1.2 x n bits for BCD format).

Il numbers containing fractions have to be converted to BCD the following algorithm may
be used:

1. Multiply the binary number as often with 5 as there are fractional bits. For example if
the number looks like MMM.NN, then multiply it with 25. Ensure that no overflow will
take place.

2. Convert the result of step 1 to BCD with the (eventually enlarged) subroutine BINDEC.
The BCD result is a number with the same number of fractional digits as the binary
number has fractional bits.

EXAMPLE: The binary number 0AS8Bh has the format MMM.NNN. The decimal value is
therefore 337.375. The steps to get the BCD number are:

1. 0ASBH is to be multiplied by 53 or 125 due to its 3 fractional bits.
0A8Bh x 125 =0525DFh

2. 0525DFh has the decimal equivalent 337375: the correct number with 3 fractional dig-
its

To convert the above example the basic subroutine BINDEC needs to be enlarged: two
binary registers are necessary to hold the input number.
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; THE BINARY NUMBER IN R12|R1l IS CONVERTED TO AN 8-DIGIT BCD
NUMBER CONTAINED IN R14 AND R13: R14]R13
; Max. hex number in RI12|R11: OSFSEOFFh (999999999)

BINDEC MOV #32,R15 ; LOOP COUNTER

CLR R14 ; 0 -> RESULT MSD
CLR R13 ; 0 -» RESULT LSD
LS1 RLA R11 ; MSB of LSBs to carry
RLC R12 ; Binary MSB to carry
DADD R13,R13 ; RESULT x2 LSD
DADD R14,R14 ; MSD
DEC R15S ; THROUGH?
JNZ L$1
RET ; YES, RESULT IN R14|Rl3

5.5.4 BCD to Binary
This subroutine converts a packed 16 bit BCD word to a 16-bit binary word by multiply-

ing the digit with its valeney. To reduce code length, the HORNER scheme is used as fol-
lows:

R5= X, +10(X, + 100X, +10.X))

The packed BCD number contained in R4 is converted to binary
; number contained in RS

BCDBIN mov #4,R8 ; loop counter ( 4 digits )
clr RS
clr R6
SHFT4 rla R4 ; shift left digit into R6
rlc R6 ; through carry
rla R4
rlc R6
rla R4
rlc R6
rla R4
rlc R6
add R6,R5 ;x +10x
clr R6
dec R8 ;through ?
jz END ;yes
MPY10 rla RS ;no, multiplication with 10
mov R5,R7
rla RS
rla R5
add R7,R5
Jjmp SHFT4 ;next digit
END ret ;result is in RS

5.5.5 Keyboard Scan

A lot of possibilities exist for the scanning of a keyboard, which also includes jumpers
and digital input signals. If more input signals exist than free inputs, then scanning is
necessary. The scanning outputs can be: I/O-ports and unused select outputs On. The
scanning input can be I/O-ports and analog inputs An switched to digital inputs. If 1/0-
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ports are used for inputs then wake-up by input changes is possible: the select line(s) of
the interesting inputs (keys, gates ete.) are set high and the interrupt(s) are enabled for
the interesting signal edges. If one of the interesting input signal changes occurs. inter-
rupt is given and wake-up takes place.

The figure below shows a keyboard with 16 keys.

32kHz

s _
i .5589

oxpPo a FHA———
0y/POb HA—
02/P0.c HA—
okPo.d

An/PO.w

Am/PO.x

Ao/POy 7

Ap/P0.z

iYigure H.11: Keyboard Connection

The following figure shows some possibilities for connecting external signals to the
MSPA430:

— The first row contains keys. The decoupling diode in the row selection line prevents
that pressed keys shortening other signals. If more than one key can be activated si-
multancously then any key needs to have a decoupling diode.

— The second row contains diodes. This is a simple way to tell a system which version is
used.

— The third row seleets digital signals coming from peripherals with outputs that can be
switched to HI-Z mode.

~ The fourth row uses an analog switch to connect digital signals to the MSP430. Shown
is the output of a CMOS gate and the output of a comparator.

The rows containing keys need to be debounced: if a change is seen at these inputs, the
information is read in and stored. A second read is made after 10 to 100 ms. and the in-
formation read then compared to the first one. If both reads are equal the information is
used: otherwise, the procedure is repeated. The Basie Timer can be used for this pur-
pose.
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32kHz
I_mh LCD
[ 1i2dH560Y
SEL I
MSP430
Ox/P0O.a
Oy/POb
0z/P0O.c
OkPO.d H>H
xC
An/PO W — 18 1A —a -
Am/P0O.x - X ¥ 2B 2A —
A0/PO.y " 3B 3A ¥<]:
Ap/P0O z " 7 4B 4A |—
X 2016 Digital Signals
= { :] X = [; #=
E Vln
Figure 5.12: Connection of different Input Signals

5.5.6 Temperature Calculations for Sensors

Several sensors can be connected to the MSP430. The section coneerning the ADC de-
seribes the different possible ways of doing this. Independently of the ADC or sensor type
used, a binary number n is finaily delivered from the ADC that represents the measured
value K

K =/rf(n)

with: K Measured value (temperature, pressure ete.)
n Result of ADC

The function f(n) is not normally linear for sensors, and therefore a caleulation is needed
to get the measured value K. The linearization of sensors by resistors is described in
Application Report "SENSOR COMPONENT".

Two methods are described of how to represent the function f(n):
1. Table processing
2. Algorithms (linear, quadratic, cubic or hyperbolic equations)

5.5.6.1 Table Processing for Sensor Calculations

The ADC measurement range used is divided into parts, each of them having a length of
2Y bits. For any multiple of 2" the output value K is calculated and stored in a one-
dimensional table.
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This table is used for linear interpolation to get the values for ADC results between two
table values. The next figure shows such a non-linear sensor characteristic.

—

ADC value

IPigure H.13: Nonlinear Function
Steps for the development of a sensor table:

1. Definition of the external circuitry used at the ADC input (See section "The Analog-to
Digital Converters")

. Definition of the output format of the table contents (bits after decimal point, M.N)

. Caleulation of the voltage at the analog input Ax for equally spaced (An) ADC values n

. Caleulation of the sensor resistances for the above caleulated analog input voltages

. Caleulation of the input values K (temperature, pressure etc.) that cause these sensor

resistances

Insertion of the caleulated input values K in the format defined with 2. into the table

T IO

6.

EXAMPLE: A sensor characteristic is deseribed in a table TABLE. The ADC results are
divided in distances An = 128 starting at value n0 = 256. The output value K is content
of this table. The ADC result is corrected with offset and slope coming from the calibra-
tion procedure.

.BSS OFFSET, 2 ; Offset from calibraticn 10.0
.BSS SLOPE, 2 ; Slope from calibration 1.10

DN .EQU 128 ; Delta N
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Table contains signed values.

TABLE

The decimal point

may be anywhere

.WORD 02345h, ...,00F3h; NO, NI, ...NM
TABCALl MOV &ADAT, TROPL ; ADC result to IROPL 14.0
ADD OFFSET, IROP1 ; Correct offset 10.0
MOV SLOPE, IROP2L Slope 1.10
CALL #MPYS (ADC+OFFSET) XxSLOPE 15.10
Corrected ADC value in IRACM|IRACL.
CALL #SHFTLS6 ; Result to IRACM 15.0
MOV IRACM, XIN ; Copy it
; Calculation of NA address. One less adaptation due to
; word table (2 bytes/item).
MOV XIN, TROPI ; N -~ Multiplicand 15.0
SWPB IROP1L ; Adapt to deltaN = 128 14.0
BIC.B #1,IROP1 ; Even word address needed 8.0
SUB #2,IROP1 ; Adapt to NO = 256 (2 x deltaN)
MOV TABLE (IROPLl) ,R15 NA from table
MOV TABLE+2 (IROP1) ,R14 ; NA+l from table
;K XIN-NA/ (deltaN) x (NA+l - NA) + NA
SUB R15, XIN ; XIN NA
MOV R14,IROP2L ; NA+1
SUB R15, IROP2L NA+1 NA)
MOV XIN, IROP1 XIN - NA
CALL #MPYS (XIN - NA) x (NA+l - NA)
CALL #SHFTRS6 ; /deltaN
CALL #SHFTRSL ; deltaN = 277
ADD R15, IRACL ; + NA, result in TIRACL
RET

5.5.6.2 Algorithms for Sensor Calculations

If the function K = f(n) can be described by an algorithm of the form Lincar Equation

K=bxn+a

or Quadratic Equation
K=cxn'+bxn+a

or Cubic Equation
K=dxn'+exn’ +bxn+a

or Root Equation

K=axJb+cxn
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or Hyperbolic Equation

¢
K= +a
b+n

then no table is necessary: the output value K can be calculated out of the ADC result n.
The cocefficients a, b, ¢, d can be found with PC computer software (e.g. MATHCAD) or
with formulas by hand.

Steps for the development of a sensor algorithm:

=z

. Definition of the hardware circeuitry used at the ADC input (See section [ The Analog-

to- Digital Converters® for the different possibilities)

. Definition of the output format of the algorithm (bits after decimal point: M.N)

3. Definition of an input value K to be measured (temperature, pressure ete.)

. Caleulation of the nominal sensor resistance for the above chosen input value

. Caleulation of the voltage at the analog input Ax for this sensor resistance (See sece-

tion , The Analog-to-Digital Converters® for the formulas used with the different cir-
cuits)

i. Caleulation of the ADC result n for this input voltage at Ax
. Repetition of steps 3 to 6 depending on the algorithm used: twice for linear equations,

three times for quadratic equations, four times for cubie, hyperbolic and root equa-
Ltions.

. Decision of the sensor characteristic
. Caleulation of the coefficients a, b, ¢ and d out of the calculated pairs of input value K

and ADC result n

IEXAMPLIE: A quadratie behaviour is given for a sensor characteristic:

K=ecxn'+bxn+a

with n representing the ADC result. The corrected ADC result (see above) is stored in
XIN: the three terms are stored in ROM locations A, B and C.

C .WORD 07FE3h ; Quadratic term +-0.14
B .WORD 00346h ; Linear term +-0.14
A .WORD 01234h ; Constant term +-15.0
QUADR MOV XIN, IROP1 ; Corrected ADC result 14.0
MOV C, IROP2L ; Factor c¢ +-0.14
CALL #MPY ; XIN x C 14.14
ADD B, IRACL ; (XIN x C) + B +-0.14
ADC IRACM ; Carry to HI reg
CALL #SHFTL3 ; To IRACM 14.1
MOV IRACM, IROP2L ; (XIN x C) + B -> IROP2L 14.1
CALL #MPYS ; (XIN x C) + B) x XIN 28.1
CALL #SHFTL2 ; Result to IRACM 15.0
ADD A, IRACM ; Add a 15.0

The signed l6-bit result is located in IRACM.

RET
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The HORNER-scheme used above can be expanded to any level; it is only necessary to
shift the multiplication results to the right to ensure that the numbers always fit into the
32-bit result buffer. The terms A, B, and C may also be located in RAM.

If lots of calculations need to be done then the use of the floating point package should be
considered. See chapter 5.6 for details.

5.5.7 Battery Check

Due to the ratiometric measurement prineiple of the ADC, the measured digital value of
a constant voltage is an indication of the supply voltage of the MSP430. The measured
value is inversly proportional to the supply voltage V.. To get the reference for later bat-
tery tests a measurement is made with Vo= VO The result is stored in the RAM. 1f
the battery should be tested. another measurement has to be made and the result com-
pared to the stored value measured with Vi =V . determines the status of the battery.
If the measured value exceeds the stored one, then V. <V, and a Battery Low indica-
tion can be given by software.

Figure 3.14 shows the conneeting of the voltage reference.

CCmin

|"| 0 ‘132kHz
r[‘— SVee
2 MSP430
[ A3
LMx85-1.2
Uref=1.2V
| AGND
Vss Vee
ov +3V
Figure 3.14: Connection of a Voltage Reference

If no reference measurement has to be done, the value for the comparison can be deter-
mined by calculation.
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According to the data sheet of the LMx83-1.2 the typical reference voltage is 1.235 Volt
with a maximal deviation of £0.012 Volt. Using the Auto-Mode of the A/D-Converter. the
digital value is

N = v X2
SV

The reference voltage can be calculated as follows:

SV =8V, =28 Volt

CCmin ™

VIN = 1.235 £ 0,012 Volt

235+ 0,012 Volt) - 2"
W, = (123 E0012 Voly
' 28 Volt

To ensure that the voltage of the battery is above SV .. the reference value should be
set to:

W =

ivery measured value above 7156 indicates that the battery voltage is lower than the
caleulated value and a Battery Low signal should be given.

The software for making a reference measurement and the resulting comparison with a
new measured value is shown below.

ASOC .set 1 ;bit position for Conv. Start in BTCTL
ADAUTO .set 800h ;bit position to select auto mode

ADNOTI .set 100h ;bit position to select no current source
ADA3 .set Och ;bit position to select input to A3
ADVREF .set 2h ; SvVCe=vee

;first the Vcemin value has to be measured and stored in the RAM
;variable BATREF

call #MEAS_A3 ;measure Vccemin
mov R10, &BATREF ;and store value in RAM

;¥**** Main Program:

;now the battery should be ckecked. If the battery is low, the
;program jumps to the label BATLOW

call #MEAS_A3 ;measure input A3
cmp &BATREF, R10 ;is Vbatt <= Vmin ?
jlo BATOK

BATLOW ;battery is low !
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BATOK ... .. ;battery is ok, normal operation

SEAA A KA K AR AKX AKX A KK AN R XA KA A AR KA A AR A KA AR KRN R A KA AR KA A K KRR AR KKK AN AR KA

;Channel A3 is measured with the polling method for one time
;The result will be contained in R10

R R I R R R R R R R R R R RS R R R R RS

MEAS_A3 bic.b #ADIE, &IE2 ;disable ADC interrupt
mov #ADVREF+ADA3 +ADNOI + ADAUTO+ASOC, &ACTL
; SVCC=Vce
; Input=A3

;no current source
;range=auto

MEAS_1 bit.b #ADIFG, &IFG2 ;wailt for EOC-should be IFG2 (I1E2X)
jz MEAS_ 1
bic.b #ADIFG, &IFG2 ;clear EOC flag
mov &ADAT,R10
bis.b #ADIE, &TE2 ;enable ADC interrupt
ret

5.5.8 Data Security Applications

If consumption data is transmitted via telephone lines or sent by RIF then it is normally
necessary to enerypt this data to make it completely unreadable. For these purposes the
DES (Data Encryption Standard) is used more and more, and is becoming the standard
in Europe too. The next two sections show how to implement the algorithms of this stan-
dard and how the encrypted data can be sent by the MSP4:30.

5.50.8.1 Data Encryption Standard (DES) Routines

The DES works on blocks of 64 bits: these blocks are modified in several steps and the
output is also a block with totally scrambled 64 bits. It is not the intention of this seetion
to show the complete DES algorithm; instead, a subroutine is shown that is able to do all
of the necessary permutations in a very short time. The subroutine mentioned can do the
following permutations (the tables mentioned refer to the booklet "Data Eneryption Algo-
rithm" of the ANSI):

—_

. Initial Permutation: 64 bits plain text to 64 bit enerypted text via table 1P
. 32 bit to 48 bit permutation via table E

. 48 bit to 32 bit permutation via tables S1 to S8

. 32 bit to 32 bit permutation via table P

. Inverse initial Permutation: 64 bits to 64 bit via table IP-1

M

U o

<

The permutation subroutine is written in a code and time optimized manner to get the
highest data throughput with the lowest ROM space requirements.

For each kind of permutation a description table is necessary that contains the following
information for every bit to be permuted:

7 5 3 2 0
lRep Bit

with: Rep. Bit Repetition Bit: The actual bit is contained twice in the

EOT

Byte Index Bit Position ]

s
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output table. The next byte (with Rep. = () contains the
address for the second insertion. This bit is only used
during the 32-bit to 48-bit permutation.

[OT End of Table Bit: This bit is set in the last byte of a per-
mutation table

Byte Index The byte address () to 7 inside the output block

Bit Position The bit address 0 to 7 inside the output byte

The following figure shows the permutation of bit i. The description table contains at ad-
dress i the information:
Repetition Bit = 0: The bit i is to be inserted into the output table only once

EOT =0 Bit i is not the last bit in the deseription table
Byte Index = 3: The relative byte address inside the output table is 3 (PTOUT+3)
Bit Position = 5: The bit position inside the output byte is 5 (020h)
81l Position ]
Bit Address 7 5 0
! [ 0
[ ] 3

ofo] 3 [ 5 i [T

54 64] 7

Byte Index
Description Table Input Table Output Table
IFigure H.15: DEES Eneryption Subroutine
NOTE

The bit numbers used in the DES specification range from 1 to 64. The
MSP430 subroutines use addresses from 0 to 63 due to the computer ar-
chitecture.

The software subroutines for the above described permutations follow. The subroutines
PERMUT and PERM_BIT are used for all necessary permutations (see above). The sub-
routines shown have the following needs:

1. The initialization of the subroutine PERMUT decides which permutation takes place.
The address of the actual description table is written to pointer register PTPOI
. Permutations are always made from table PTIN (input table) to table PTOUT (output
table).
3. Only "Ones" are processed during the permutation. This saves 50% of processing time.
The output buffer is therefore cleared initially by the PERMUT subroutine.
4. The output buffer must start with an even address (word instructions are used for
clearing)

(8

; Main loop for a permutation run. Tables with up to 64 bits are
permuted to other tables.

128 K3 TEXAS INSTRUMENTS



MSP430 Family Software Applications

; Definitions for the permutation software

PTPOI .EQU R6 ; Pointer to description table

PTBYTP  .EQU R7 ; Byte index input table
PTBITC .EQU RS8 ; Bit counter inside input byte
.BSS PTIN, 8 ; Input table 64 bits
.BSS PTOUT, 8 ; Output table 64 bits
EOT CEQU 040h ; End of table indication bit
REP .EQU 080h ; Repetition bit
Call for the "Initial Permutation". Description table is

; starting at label IP (64 bytes for 64 bits).
MOV #IP, PTPOT ; Load description table pointer
CALL #PERMUT ; Process Initial Permutation

Permutation subroutine. Table PTIN is permuted to table PTOUT

PERMUT CLR PTBYTP ; Clear byte index input table

CLR PTOUT ; Clear output table 8 bytes

CLR PTOUT+2

CLR PTOUT+4

CLR PTOUT+6
PERML CLR PTBITC ; Bit counter (bits inside byte)
L5502 RRA.B PTIN (PTBYTP) ; Next input bit to Carry

JNC L$500 ; If bit = 0: No activity nec.
L$501 CALL #PERM_BIT ; Bit = l: Insert bit to output
L$500 INC PTPOI ; Incr. description table pointer

TST.B -1 (PTPOT) ; REP bit set for last bit?

JN LS$501 ; Yes, process 2nd output bit

it is processed. Check if byte limit reached

INC.B PTBITC i Incr. bit counter

CMP.B #8, PTBITC ; Bit 8 (outside byte) reached?
JLO L$502

INC.B PTBYTP ; Yes, address next byte

BIT.B #EOT, -1 (PTPOTI) ; End of desc. table reached?
Jz PERML ; No, proceed with next byte
RET

; Permutation subroutine for one bit: A set bit of the input is
; set in the output depending on the information of a

; description table pointed too by pointer PTPOI

; 20 cycles + CALL (5 cycles)

PERM_BIT .EQU S
MOV.B @PTPOI,R4 ; Fetch description word
MOV R4,R5 ; Copy it
BIC.B #REP+EOT, R4 ; Clear Repetition bit and EOT
RRA.B R4 i Move Index Bits to LSBs
RRA.B R4 ; to form byte index to PTBIT
RRA.B R4
AND.B #07h,R5 ; Mask out index for output table
BIS.B PTBIT(R5), PTOUT (R4) ; Set bit in output table
RET

PTBIT .BYTE 1,2,4,8,10h,20h,40h, 80h ; Bit table

; Description Table for the Initial Permutation. 64 bits of
; the input table are permuted to 64 bits in the output table
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(IP-1 table contains these numbers)

P

.BYTE 40-1 ; Bit 1 -» position 40
.BYTE 8-1 ; Bit 2 -- position 8
.BYTE EOT+25-1 ; Bit 64 -» pos. 25, End of table
. Description Table for the Expansion Function E. 32 bits of
. the input table are permuted to 48 bits in the output table
E .BYTE REP+2-1 ; Bit 1 -» position 2 and 438
.BYTE 48-1 ;. Bit 1 -» position 43
.BYTE 3-1 ; Bit 2 -» pos. 3
.BYTE REP+1-1 ; Bit 32 > position 1 and 47
.BYTE EOT+47-1 ; Bit 32 > pos. 47, End of table

PProcessing time for a 64-bit block: The most time consuming parts for the eneryption are
the permutations. All other operations are simple moves or exclusive OR's (XOR). This
means that the number of permutations multiplied with the number of cyeles per bit
gives an estimation of the needed processing time. Every bit needs 43 cyveles to be per-

muted.
The necessary number of permutations is:

1. Initial Permutation: 64
2, 32 bit to 48 bit permutation 16 x 48
3. 48 bit to 32 bit permutation 16 x 32
4 32 bit Lo 32 bit permutation 16 x 32
. Inverse initial Permutation: 64
6. Key permutations choice 1 6
7. Key permutations choice 2

Sum of permutations

Number of eyeles
typically (2744 x 43 x 0.5)
maximum (2744 x 43)

58996 cycles
117992 eycles

32 ones in block
64 ones in block

For a block with 64 bits approximately 59 ms are needed with an MCLK of 1 MHz.

ROM space: The needed ROM space can be divided into the following parts:

1. Main program (approx.) 400 bytes
2. Subroutines 100 bytes
3. Tables for permutations 570 bytes

Sum of bytes 1070 bytes

The complete DES eneryption software fits into 1K of bytes.
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5.0.8.2 Output Sequence for 19.2 kHz Bi-Phase Space Code

The encerypted information is output normally with a Bi-Phase Code: Figure 5.16 shows
such a modulation. At the beginning of a bit a level change occurs. A zero bit "0" has an
additional level change in the middle of the bit, a one bit "1" has the same information
during the whole bit.

non nyn uqn wov e nge no" nqu

Information —L_I 1 r L J_
oo

RF off RF on

Figure 5.16: Bi-Phase Space Code

The output sequencee is written for P0.4 (as shown in Figure 4.12 Heat Allocation Meter).
This means that no constant of the Constant Generator may be used. If 0.0, PO.1,

P0.2 or PO.3 are used, the instructions which address the ports are one eyele shorter and
the delay subroutines have to be adapted.

OUT192 OUTPUTS THE RAM STARTING AT "RAMSTART" BITWISE

TN RT-PHASE-CODE. EVERY 040h ADDRESSEC A CCAN IS MADE

TO READ PO.1 WHERE THE WATER FLOW COUNTER IS LOCATED. THE

4 SCAN RESULTS ARE ON THE STACK AFTER RETURN FOR CHECKS
; NOPs ARE INCLUDED TO ENSURE EQUAL LENGTH OF EACH BRANCH.
; All interrupts must be disabled during this output subroutine!
; CALL #NOPx MEANS x CYCLES OF DELAY

OUTPUT .EQU 010h ; PO.4:
PORT .EQU 0llh ; PORTO
RAMSTART .EQU 0200h ; Start of output info
RAMEND .EQU 0300h ; End of output info
SCAND .EQU 040h ; Scan delta (addresses)
Rw .EQU R15
Rx .EQU R14
Ry .EQU R13
Rz .EQU R12
ouT192 BIC.B #OUTPUT, &PORT ; Reset output port
MOV #RAMSTART, Ry ; WORD POINTER
MOV #RAMSTART+SCAND, Rw ; NEXT SCAN ADDRESS
; FETCH NEXT WORD AND OUTPUT IT CYCLES
WORDLP MOV #16,Rz ; BIT COUNTER 2
MOV @Ry, Rx ; FETCH WORD 5

; OUTPUT NEXT BIT: Change output state

BITLOP XOR.B #OUTPUT, &PORT ; CHANGE OUTPUT PORT 5
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; CHECK IF NEXZT

SCAN OF WATER FLOW IS NECESSARY: Ry >= Bw
CMP Rw, Ry ; 1
JHS SCAN ; Y{ES 2
NOP NG 5
NOP
NOP
NOP
NOP
JMP BITT ; 2
SCAN ADD #SCAND, Rw ; NEXT SCAN ADDRESS 2
PUSH &PORT ; PUSH INFO OF PORT 5
BITT RRC Rx : NEXT BIT TO CARRY 1
JNC OUTO ; BIT = 0 2
; BIT l: OUTPUT PORT 1S CHANGED IN THE MIDDLE OF EIT
CALL #NOP9 ; 9
XOR . B #OUTPUT, &PORT ; CHANGE OUTPUT PORT 5
JMp CHECK ; 2
; BIT = 0: OUTPUT PORT STAYS DURING COMPLETE BIT
ouTo CALL #NOP16 ; OUTPUT STAYS HI1l6
; END OF LOOP: CHECK IF COMPLETE WORD OR END OF INFO
CHECK DEC Rz ; 16 BITS OUTPUT? 1
J7 L$1 ; YES 2
CALL #NOP15 ; NO, NEXT BIT 15
JMP BITLOP ; 2
; COMPLETE WORD OUTPUT: ADDRESS NEXT WORD
L$1 ADD #2, Ry ; POINTER TO NEXT WORD 2
CMP #RAMEND, Ry ; RAM OUTPUT? 2
JEQ COMPLET ; ; 2
NOP ; NO, NEXT WORD 2
NOP
JMP WORDLP ; 2
COMPLET 4 SCANS ON STACK

NOP Subroutine:
; cycles when called.
the number of cycles including

NOP16 NOP
NOPL5S NOP
NOP14 NOP
NOP13 NOP
NOP12 NOP
NOP11 NOP
NOP10 NOP
NOP9 NOP
NOP8 RET

The Subroutine
The number

inserts defined numbers of
xx of the called label defines
CALL (5 cycles) and RETS

#NOPxx needs 5 cycles

RET needs 3 cycles
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3.6 Floating Point Package

Floating point arithmetic is necessary if the range of the used numbers is very large.
When using a floating point package it is normally not nee essary to take care if the limits
of the number range are exceeded. This is due to a number ratio of about 107 if com-
paring the largest to the smallest possible number (remember: the number of smallest
particles in the whole universe is estimated to 10™). The disadvantages are the slower
caleulation speed and the ROM space needed.

A Floating Point Package with 24-bit and 10-bit mantissa exists for the MSP430. The
number range. resolution and error indication are explained as well as the conversion
subroutines used as the interface to binary and binary-coded-decimal (BCD) numbers.
Examples are given for a lot of subroutines and applications like the square root are in-
cluded in a software example chapter.

5.6.1 General

This Floating Point Package (FI'P) consists of 3 files supporting the I'LOAT format

(32 bits) and the .DOUBLE format (48 bits):

= FPPO3.ASM: the Basic Arithmetic Operations add. subtract, multiply, divide and com-
pare

= CNVO3.ASM: the conversions from and to the binary and the BCD format

= FPPDEF.ASM: the definitions used with the other two files

NOTE
The file FPPO3.ASM may be used without the conversions, but the con-

version subroutines need the FPPO3.ASM file. This is due {o the common
completion parts contained in FPPO3.ASM.

The assembly time variable DOUBLE defines which formad is to be used:

DOUBLE = 0: Two word format .FLOAT with 24-bit mantissa
DOUBLE = 1: Three word format .DOUBLE with 40-bit mantissa

The assembly time variable SW_UFLOW defines the reaction after a software underflow:

SW_UFLOW = 0: Software underflow (result is zero) is not treated as an
error
SW_UFLOW = 1: Software underflow is treated as an error (N is set)

The FPP supports the four basic arithmetic operations, comparison, conversion subrou-
tines and two register save/restore functions:

FLT_ADD Addition

FLT_SUB Subtraction

FLT_MUL Multiplication

FLT_DIV Division

FLT_CMP Comparison

FLT_SAV Saving of all used registers on the stack
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FLT_REC Restoring of all used registers from the stack
CNV_BINxxx Binary to floating point conversion
CNV_BCD_IP BCD to floating point conversion
CNV_FP_BIN Floating point to binary conversion
CNV_IFP_BCD Floating point to BCD conversion

5.6.2 Common Conventions

The use of registers containing the addresses of the arguments saves time and memory
space. The arguments are not affected by the operations and can be located either in
ROM or in RAM. Before the call for an operation the two pointers RPARG and RPRES
are loaded with the address(es) of the most significant word MSW of the argument(s).
After the return from the call both pointers and also the stackpointer SP point to the re-
sult (on the stack) for an casy continuation of arithmetical expressions.

NOTE
The resull of a floating point operation is always written to the address
the stack pointer SP pointed to when the subroutine was called. The ad-
dress contained in register RPRES is used only for the addressing of Ar-
gument 1.

The registers which hold the pointers are called:

To 1.

To 2.

To 3.

RPRES Pointer to Algumvnt 1 and Result
RDOARI(Y Dainte D and R |LIII
RPARG Pointer to Argument 2 and Result

1. RESULT,

NIW

2. RESULT,

NEW

3. RESULT,

NEW

= @(RPRES) <operator > @ (RPARG)
= @(RPRES) <operator> RESULT
= RESULT,

OLD

OLh

<operator > @ (RPARG)

RPRES and RPARG both point to the arguments for the next operation. This is
the common form that is always valid independent where the two pointers point
to (new arguments or result). The result of the operation is written to the ad-
dress the stack pointer SP points to.
RPRES points to the argument 1, RPARG still points to the result of the last op-
eration residing on the top of the stack (TOS). This calling form allows the op-
erations (argument 2 - result) and (argument 2/ result).
RPARG points to the argument 2, RPRES still points to the result of the last op-
eration residing on the top of the stack. This calling form allows the operations
(result - argument 2) and (result / argument 2).

NOTE
The formulas 2 and 3 are not equal, they allow to use the result on the
TOS in two ways with the division and the subtraction. No time and
ROM-consuming moves are necessary if the result is the divisor or the
subtrahend.
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Common to these subroutines is:

1. The pointers RPARG and RPRES point to the addresses of the input numbers. They
always point to the MSBs of these numbers.

2. The input numbers are not modified, except the last result on the stack was used as
an operand.

3. The result is located on the top of the stack (TOS), the stack pointer SP, RPARG and
RPRES point to the most significant word of the result

4. Every floating point number represents a valid value. No invalid combinations like
“Not a Number”, "De normalized Number” or "Infinity" do exist. This way the MSPA30
FPP has a larger range than other FPPs have and allows a higher speed with smallest
memory usage.

o, Every floating point operation outputs a valid floating point number that can be used
immediately by the other operations.

i 1 acresult is too large (exceeds the number range) then the signed, maximum number
is output. An error indication is given in this case.

5.6.3 The Basic Arithmetic Operations

The PP is designed for fast and memory saving computations. So register instruetions
are the ideal fit for this target. A common save and recall routine for the registers used
at the beginning and the end of an arithmetical expression is an additional optimization.
The subroutines FL'T_SAV and FLT_REC should be applied as shown in the examples
helow.

8.6.3.1 Addition

FLT_ADD The floating point number pointed (o by the register RPARG is added to the
floating point number pointed to by the register RPRES. The 25th bit (41st
bit in case of DOUBLE format) of the calculated mantissa is used for
rounding: it is added to the result.

RESULT on TOS = @(RPRES) + @(RPARG)

Errors: Normal error handling. See chapter Error Handling for a detailed descrip-
tion.
Output: The floating point sum of the two arguments is placed on the top of the

stack. The stack pointer SP points to the same location as it did before the
subroutine call.

The stack pointer SP, RPRES and RPARG point to the MSBs of the floating
point sum. If an error occurred (N = 1 after return) then the result is the
number that represents the correct result best: 0 resp. +3.4 x 10™.
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EXAMPLE: The floating point number (FLOAT format) contained in the ROM locations
starting at address NUMBER is added to the RAM locations pointed to by R4. The result
is written to the RAM addresses RES, and RES+2 (LSBs).

DOUBLE .EQU 0
MOV R4,RPRES ;s Address of Argument 1 in R4
MOV #NUMBER, RPARG ; Address of Argument 2
CALL #FLT_ADD ; Call add subroutine
JN ERR_HND ; Error cccurred, check reascon
MOV @RPRES+,RES ; Store FPP result (M

MOV @RPRES+, RES+2 ; LSBs
. ; Continue with program

5.6.3.2 Subtraction.

FLT_SUB  The floating point number pointed to by the register RPARG is subtracted
from the floating point number pointed to by the register RPRES. By proper
loading of the two input pointers it is possible to calculate (Argument! -
Argument2) and (Argumnet2 - Argument (). The 25th bit (11stbit in case of
DOUBLE format) of the caleulated mantissa is used for rounding: it is sub-
tracted from the result.

RESULT on TOS = @(RPRES) - (@ (RPARG)

Errors: Normal error handling. See chapter Error Handling for a detailed descerip-
tion.
Output: The floating point difference of the two arguments is placed on the top of

the stack. The stack pointer SP points to the same location as it did before
the subroutine call.

The stack pointer SP, RPRES and RPARG point to the MSBs of the floating
point difference. If an error occurred (N = 1 after return) then the result is
the number that represents the correct result best: 0 resp. £3.1x 10,

EXAMPLIS: The floating point number (.DOUBLE format) contained in the ROM locations
starting at address NUMBER is subtracted from the RAM locations pointed to by R4. The
result is written to the RAM addresses pointed to by R4.

DOUBLE .EQU 1
MOV R4, RPRES ; Address of Argumentl in R4
MOV #NUMBER, RPARG ; Address of Argument?2
CALL #FLT_SUB ; ((R4)) - (NUMBER) -> TGS
JN ERR_HND ; Error occurred, check reason
MOV @RPRES+, 0 (R4) ; Store FPP result (MSBs)
MOV @RPRES+, 2 (R4)

MOV @RPRES, 4 (R4) ; LSBs
L ; Continue with program
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5.6.3.3 Multiplication

FLT_MUL  The floating point number pointed to by the register RPARG is multiplied
by the floating point number pointed to by the register RPRES. The 25th
and 26th bit (41st and 12nd bit in case of DOUBLE format) of the caleulated
mantissa are used for rounding:

I a shift is necessary to get the MSB of the mantissa set then the LSB-1 is
shifted into the mantissa and the LSB-2 is added to the result.
It the mantissa is yet one then only the LSB-1 is added to the result.

RESULT on TOS = @ (RPRES) x @ (RPARG)

Errors: Normal error handling. See chapter Error Handling for a detailed deserip-
tion.
Output: The floating point product of the two arguments is placed on the top of the

stack. The stack pointer SP points to the same location as it did before the
subroutine call.

The stack pointer SP, RPRES and RPARG point to the MSBs of the floating
point product. If an error occurred (N = 1 after return) then the result is
the number that represents the correet result best: 0 resp. £3.4 x 10,

Special Cases: O0x0=0 OxX=0 Xx0=0

EXAMPLE: The result of the last operation, a floating point number (FLOAT format) on

the top of the stack, is multiplied by the constant .

DOURBRLE . EQU 0
MOV #PI, RPARG ; Address of constant PI
CALL #FLT_MUL ; (RPRES) x (PI) --» TOS
JN ERR_HND ; Error occurred, check reason
N ; Continue with program
Pl .FLOAT 3.1415926535 ; Constant PI

5.6.3.4 Division

FLT_DIV  The floating point number pointed to by the register RPRES is divided by
the floating point number pointed to by the register RPARG. By proper
loading of the two input pointers it is possible to calculate (Argument1 /
Argument2) and (Argument?2 / Argument1). The 25th bit (41st bit in case of
DOUBLE format) of the calculated mantissa is used for rounding: it is
added to the result.

. @ @ (RPRES
RESULT on TOS = w
(@(RPARG)
Errors: Normal error handling. See chapter Error Handling for a detailed descrip-

tion. Division by zero is indicated too.
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QOutput: The floating point quotient of the two arguments is placed on the top of the

stack. The stack pointer SP points to the same location as it did before the
subroutine call.
The stack pointer SP, RPRES and RPARG point to the M5Bs of the floating
point quotient. If an error occurred (N = 1 after return) then the result is
the number that represents the correct result best for example the largest
number that can be represented if a division by zero was made.

Special Cases: 0/0=0 /X =0  -X/0 = max. neg. number
+X/0 = max. pos. number

[EXAMPLIS: The floating point number (. DOUBLE format) contained in the ROM locations
starting at address NUMBER is divided by the RAM locations pointed to by R4, The re-
sult is written to the RAM addresses pointed to by R4,

DOUBLE . EQU 1
MOV R4, RPARG ; Address of dividend
MOV #NUMBER, RPRES ; Address of divisor
CALL #FLT_DIV ; (NUMBER) / ((R4)) --» TOS
JN ERR__HND ; Error occurred, check reason
MOV @RPRES+, 0 (R4) ; Store FPP result (MSBs)
MOV @QRPRES+, 2 (R4)
MOV @RPRES, 4 (R4) ; LSBs
. ; Continue with program

framples for the Basic Avithmetic Operations

L e b B losny st Follavrineg oy
The example below shows the following program

» FLOAT format:

. The used registers RD to R12 are saved on the stack.

. Four bytes are allocated on the stack to hold the results of the operations.

3. The pointer to a 12-digit BCD-buffer is loaded into pointer RPARG and the BCD-to-
floating point conversion is called. The resulting floating point number is written to
the result space allocated before.

4. The resulting floating point number is multiplied with a number residing in the mem-

ory address VAL3. RPARG points to this address.

. To the last result a floating point number contained in the memory address VAL4 is
added

. The final result is converted back to BCD format (6 bytes) that can be displayed
nearly directly in the LCD.

. The final result is copied to the RAM addresses BCDMSD, BCDMID and BCDLSB. The
three necessary POP instructions correct the stack pointer SP to the value after the
"Save Register" subroutine.

8. The used registers RS to R12 are restored from the stack. The system environment is

exactly the same now as before the floating point calculations.

[

=23 [

~]

DOUBLE .EQU 0 ; Use .FLOAT format
...... ; Normal program
CALL #FLT_SAV ; Save registers R5 to RI12
SUB #4,SP ; Allocate stack for result

138 K3 Texas INSTRUMENTS



MSP430 Family Software Applications

MOV #BCDB, RPARG ; Load address of BCD-buffer
CALL #CNV_BCD_FP ; Convert BCD number to FP

Calculate (BCD-number x VAL3) + VAL4

MOV #VAL3, RPARG ; Load address of slope
CALL #FLT_MUL ; Calculate next result
MOV #VAL4 , RPARG ; Load address of offset
CALL #FLT_ADD ; Calculate next result
CALL #CNV_FP_BCD ; Convert final FP result to BCD
JN CNVERR ; Result too big for BCD butter
POP BCDMSD ; BCD number MSDs and sign
POP BCDMID ; BCD digits MSD-4 to LSD+4
POP BCDLSD ; BCD digits LSD+3 to LSD
; Stack 1s corrected by POPs
CALL #FLT_REC ; Restore registers RS to RI12
; Continue with program
VAL3 . FLOAT -1.2345 ; Slope
VAL4 .FLOAT 14.4567 ; Offset
CNVERR - ; Start error handler

The next example shows the following program steps for the .DOUBLE format:

The used registers RS to R15 are saved on the stack.

Six bytes are allocated on the stack to hold the results of the operations.

The ADC buffer address of the MSP4300C32x (14 bit result) is written to RPARG and
the last ADC result converted into a floating point number. The resulting floating point
number is written to the result space allocated before.

. The resulting floating point number is multiplied with a number located at the mem-

ory address VALS. RPARG points to this address.
Moy they Lot mocnlt o Floading naoint namben comdainad o sho
LU UHIU 1ast 1osuit a nudtiig pulllt numpenr comatinea i v

added.

i. The final result is converted back to binary format (6 bytes) that can be used for inte-

ger calculations.

. The resulting binary number is copied to the RAM addresses BINMSD, BINMID and

BINLSB. The three necessary POP instructions correet the stack pointer SP to the
value after the Save Register” subroutine.

. The used registers RS to R15 are restored from the stack. The system environment is

now exactly the same as it was before the floating point calculations.

DOUBLE .EQU 1 ; Use .DOUBLE format
...... ; Normal program
CALL #FLT_SAV ; Save registers RS to R15
SUB #6,SP ; Allocate stack for result
MOV #ADAT, RPARG ; Load address of ADC data buffer
CALL #CNV_BIN16U ; Convert unsigned result to FP

;

Calculate (ADC-Result x VAL3) + VAL4

MOV #VAL3 , RPARG ; Load address of slope

CALL #FLT_MUL ; Calculate next result

MOV #VAL4 , RPARG ; Load address of offset

CALL #FLT_ADD ; Calculate next result

CALL #CNV_FP_BIN ; Convert final FP result to binary
POP BINMSD ; Store MSBs of result and sign
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POP BINMID ;
POP BINLSD ; Stack 1s corrected by POUPs
CALL #FLT_REC ; restore registers R5 to R1S
; Continue with program
VAL3Z .DOUBLE 1.2E-3 ; Slope 0.0012
VALA .DOUBLE 1.44567E1 ; Offset 14.4567

5.6.3.5 Error Handling

Isrrors during the operation affect the status bits in the status register SR: if the N-bit
contained in the Status Register SR is set to zero, no error occurred. I the N-bit is set to
one, an error oceurred. The kind of error can be seen in the Error Indication Table be-
low. The columns .FLOAT and .DOUBLIS show the returned results for each error.

Error Indication Table

Lrror Status FLOAT .DOUBLE
Overflow positive N=1 C=1,7= FE7E FREE FE7E FFFE FFEFF
Overflow negative N=1,C=17=0 FFFIFIFFE FEFFFFFFE FFFE

Underflow N=1,C=0,7=0 0000,0000 0000,0000,0000
Divide by zero N=1,0C=0,7%= FE7EFFFEEF or FE7E FFFE FFFE or
FEFFFFFE FIFFEFFFEFFFE

Software underflow is only treated as an error if the variable SW_UFLOW is set to one
during assembly.

5.6.3.6 Stack Allocation

Before calling an operation 4 (resp. 6) bytes on the stack have to be reserved for the re-
sult. The following return address of the operation oceupies another 2 bytes. The subrou-

tines need one subroutine level during the caleulations for the common initialization
subroutine.

Address n [——— SP durng MAIN Address n [€——— SP during MAIN
Ri2 R15
Address n-4 A1 Address n-4 R14
RS AR5
Addiess n-8 R6 Address n-8 RS
R7 R
Address n-12 R8 Address n-12 R8
R9 R9
Addiess n-16 R10 Address n-16 R10
Return FLT_SAV Ri1
Address n-20 Result LSBs Address n-20 R12
Result MSBs [€——— sP after return R13
Address n-24 Return FLT xxx Address n-24 Return FLT_SAV
Result LSBs
Address n-28 Result MIDs
Aesult MSBs [ SP after return
Address n-32 Return FLT xxx

Figure 5.17: Stack Allocation for .FLOAT and .DOUBLE Formats
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Note that it is strongly recommended to provide conscientious housekeeping for the
stack pointer SP to avoid stack overflow.

5.6.3.7 Number Range and Resolution

X = exponent of the floating point number. See chapter 5.6.5 for explanation.
g I

D.03.0.0 FLOAT Format

Most positive number FETEFFFF 27 x(2-2%) = 3102823 x 10"
Least positive number — 0000,0001 2N (1 + 27 = 2038736 x 107
7,610 0000,0000 0 = 0.0

Least negative number 0080,0000 -2 = -2 938736 x 10"
Most negative number  TFFF.FFFEF 250 x (2-27Y = -3.102823 x 10"
Resolution RN = 1192003 x 10" 2"

5.6.3.0.2 DOUBLE Format

Most positive num-  FE7F FFFFFFFE 2% 5 (2-27) = 3402824 x 10%

ber

Least positive 0000,0000,0001 2K (142" = 2938736 x 10
number

zZero 0000,0000,0000 0 = 0.0

Least negative 0080,0000,0000 A = -2.038736 x 10™
number

Most negative TFFFFFFFFFFE -2 x (2 -2%) = -3.402824 x 10"
number

Resolution 2 x 2k = [.818989 x 10" x 2"

5.6.4 Calling Conventions for the Comparison

The Comparison subroutine works much faster than a floating subtraction: only the ex-
ponents and signs are compared in a first step to find out the relation of the two argu-
ments. Only if exponents and signs are equal, than the mantissas are compared. After
the comparison the status bits of the status register (SR) hold the result:

Comparison Results

Comparison Status
Argument 1 > Argument 2 C=1,7=0
Argument 1 < Argument 2 C=0,7=0
Argument 1 = Argument 2 C=1,7=1

The calling and the use of the returned status bits is shown in the next example:
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MOV #ARG1, RPRES ; Point to Argument 1 MSBs

MOV #ARG2 , RPARG ; Point to Argument 2 MSBs

CALL #FLT_CMP ; Comparison: result to SR

JEQ EQUAL ; Condition for program flow

Jc ARG1_GT_ARGZ ; @GRPRES 1s greater than @RPARG

...... ; ARGl 1is less than ARGZ
EQUAL  ...... ; ARGl and ARG2 are equal
ARGl _GT ARG2 .. ; ARGl 1is greater than ARG2

5.6.5 Internal Data Representation

The deseription shows both the FLOAT and the DOUBLE formats. The two floating point
formats consist of a floating point number whose

- 8 most significant bits represent the exponent

- and the 24 resp. 40 least significant bits hold the sign and the mantissa.

31 16 15 0
; T
Exponent Smi Mantissa FLOAT
e7 e0 m22 mo
47 32 3 16 15 0
I T T
Exponent Smi Mantissa DOUBLE
e7 e0 m38 mo

FFigure H.18: FFloating Point Formats for the MSP430 IFPP

with Sm Sign of floating point number (sign of mantissa)
mx Mantissa bit x
[O sxponent bit x
X Valence of bit

The value N of a floating point number is

N=(-1)"xMx2"

NOTE
The only exception to the above equation is the floating zero: it is repre-
sented by all zeroes (32 resp. 48 zeroes). No negative zero exists, the
corresponding number (0080.0000) is a valid non-zero number.
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5.6.5.1 Computation of the Mantissa M

M=1+ ) (m, x2'* Float Format
2
38
-3 .
M=1+ 2 (m, x2' " .Double Format
1=0
The result of the above caleulation is always: 2>M2=>1

For the MSB of the normalized mantissa is always 1 a most significant non-sign bit is
implied providing an additional bit of precision. This bit is hidden and therefore called
‘Hidden Bit'. The sign bit is located at this place instead:

Smo= (: positive Mantissa

Smo= 1 negative Mantissa

NOTE
Note that a negative mantissa is NOT represented as a (wo's-
complement number, only the sign Sm decides if the floating-point num-
ber is positive or negative.

5.6.5.2 Computation of the Exponent £
E= 2((’1 x2')-128
=0
The MSB of the exponent indicates whether the exponent is positive or negative.

MSB of exponent = 0:  Exponent is negative
MSB of exponent = 1:  Exponent is positive

is

The reason for this convention is the representation of the number zero: this number
represented by all zeroes.

5.6.6 Execution Cycles
In the following evaluation the variables

X .float 3.1416 ; resp. .double 3.1416
Y .float 3.1416*100 ; resp. .double 3.1416*100
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are the base for the caleulations. The shown cyeles include the addressing of the oper-
ands and the subroutine call itself:

MOV #X,RPRES ; Address lst operand
MOV #Y, RPARG ; Addre 2nd operand
CALL #FLT #xx ; X <op- Y

o Result on TOS

The following table shows the necessary number of cycles needed for the above shown
calculations:

Operation ] JFLOAT .DOUBLE
Addition X+Y 189 207
Subtraction X-Y 178 200)
Multiplication X x Y 399 691
Division X/Y 407 754

5.6.7 Conversion Routines

5.6.7.1 General

To allow the conversion of integer numbers to floating point numbers and vice versa the
following subroutines are provided (both for .FLOAT and .DOUBLIE format):

CNV_BINxxx Convert 16-bit, 32-bit or 40-bit signed and unsigned integer binary
numbers to the floating point format

CNV_BCD_FP  Convert a signed 12-digit BCD number to the floating point format

CNV_FP_BIN Convert a floating point number to a signed 5-byte integer (40 bits)

CNV_FP_BCD  Convert a floating point number to a signed 12-digit BCD number

Common to these subroutines is:

1. The pointer RPARG points to the address of the input number
2. The input number is not modified except it is the result of the previous operation on
the TOS
3. The result is located on the top of the stack (TOS), the stack pointer SP. RPARG and
RPRES point to the most significant word of the result
1. Only integers are converted. See chapter 5.6.7.3 for the handling of non-integer num-
bers
. The result is caleulated using truncation normally, except rounding is specified. The
assembly time variable SW_RND defines which mode is to be used:

it

SW_RND = 0: Truncation is used, the trailing bits are cut off
SW_RND = 1: Rounding is used. the first unused bit is added to the number

See chapter 5.6.7.4 for details.
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6. The subroutines may be used for 2-word ((FLOAT format) and 3-word (.DOUBLIS for-
mat) floating point numbers. The assembly time variable DOUBLE defines which
mode is to be used:

DOUBLE = 0: Two word format FLOAT
DOUBLE = 1: Three word format . DOUBLE

- All conversion subroutines need two resp. three allocated words on the top of the
stack. These words contain the result after the completed operation. A simple

SUB #14.5P  FLOAT format allocation
SUB - #6.5P . .DOUBLE format allocation
or SUB - #(MI/S)+1.8P . For both formats

instruction is used for this allocation. 1t is the same allocation that is necessary any-
way for the Basie Arithmetic Operations.
S, The FPPO3.ASM package is needed: the completion routines of this file are used oo

0.6.0.2 Conversions

The possible conversions are deseribed in detail in the following seetions. Input and out-
put formats, error handling and number range are given for cach conversion.

S.6.02.0 Binary to Floating Point Conversions

Binary numbers, 16 bit. 32 bit and 40 bit in length, are converted to floating point num-
bers. The used subroutine call defines if the binary number is treated as a signed or an
unsigned number. No errors are possible, the N-bit of the Status Register is always
cleared on return, Six different conversion calls are provided:

CNV_BIN16 The 16-bit number, RPARG points to, is treated as a 16-bit signed
number.
Range: -32768 1o + 32767 (ORO00h to 071FFh)

CNV_BIN16U The 16-bit number, RPARG points to, is treated as a 16-bit unsigned

number.
Range: 0 to + 65535 (00000h to OFFFIh)
CNV_BIN32 The 32-bit number, RPARG points to, is treated as a 32-bit signed
number.
Range: 29 o #2771 (08000,0000h to O7FFIFFFFh)

CNV_BIN32U The 32-bit number, RPARG points to, is treated as a 32-bit unsigned

number.
Range: 0to2%-1 (00000,0000h to OFFFIF,FFFFh)
CNV_BIN40 The 48-bit number, RPARG points to, is treated as a 40-bit signed

resp. unsigned number.
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Range signed: 2% +1t0 42" -1

(0FF00,0000,0001h to O00FF FFFF FFFFh)
Range unsigned: 0to +2"-1

(00000,0000,0000h to 000FF FFFEF FFFFh)

The above conversion subroutines convert the 16-bit, 32-bit or 48-bit numbers to a sign
extended 48-bit number contained in the registers BIN_MSB, BIN_MID and BIN_LSB.
Depending on the used call (signed or unsigned) the leading bits are sign extended or
cleared. The resulting 48-bit number is converted afterwards. This allows an additional
subroutine call:

CNV_BIN The 48-bit signed number contained in the registers BIN_MSB to
BIN_LSB (3 words) is converted to a floating point number.
Range signed: 20 4140 42" -1
(0F1F00,0000,0001h to 000FF, FFFE FI'FFD)
Range unsigned: 0to +2"-1
(00000,0000,0000h to OOOFI FFEFFFFFIh)
NOTE

Input values outside of the 40-bit range shown above do not generate er-
ror messages. The leading bits are truncated and only the trailing
40-bits are converted to the floating point format.

Errors: No error is possible, the N-bit of the Status Register is always cleared

P NI
O e,

Output: The output depends on the chosen floating point format, selected with
the assembly time variable DOUBLE.
JLOAT The two-word floating point result is written to the top of the stack.

The stack pointer SP, RPRES and RPARG point to the MSBs of the
floating point number.

.DOUBLE The three-word floating point result is written to the top of the stack.
The stack pointer SP, RPRES and RPARG point to the MSBs of the
floating point number.

IXXAMPLIZ: The 32-bit signed binary number contained in the RAM locations BINLO and
BINHI (MSBs) is to be converted to a three word floating point number. The result is to
be written to the RAM addresses RES, RES+2 and RES+4 (LSBs).

DOUBLE .EQU 1
MOV #BINHI, RPARG ; Address of binary MSBs
CALL #CNV_BIN32 ; Call conversion subroutine
MOV @RPRES+, RES ; Store MSBs of result
MOV @RPRES+, RES+2

MOV @RPRES, RES+4 ; Store LSBs of result

5.6.7.2.2 Binary Coded Decimal to Floating Point Coneersion

Binary coded decimal numbers (BCD numbers), 12 digits in length, are converted to floating
point numbers. The MSB of the MSD word contains the sign of the BCD number:
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MSB = 0: positive BCD number
MSB = 1: negative BCD number

15 0

Address n+4 LSD+1 LSD

Address n+2

Address n MSD MSD-1 <«<———— RPARG
Sign

Figure 5.19: BCD Buffer Format

CNV_BCD_FP  The 12-digit number (contained in 3 words), RPARG points to, is con-
verted to a floating point number.
Range: SN 10 +1to +8x 10" -1

Errors: No error is possible, the N-bit of the Status Register is always cleared
on return. If non-BCD numbers are contained in the BCD-buffer, the
result will be erroncous. If the MSB of the input number is greater
than 7, then the input number is treated as a negative number.

Output: A floating point number on the top of the stack

FLOAT The two-word floating point result is written to the top of the stack.
The stack pointer SP, RPRES and RPARG point to the MSBs of the
floating point number.

.DOUBLE The three-word floating point result is written to the top of the stack.
The stack pointer SP, RPRES and RPARG point to the MSBs of the
floating point number.

EXAMPLE: The signed BCD number contained in the RAM locations starting at label
BCDHI (MSDs) is to be converted to a two word floating point number. The result is to be
written to the RAM addresses RES, and RES+2 (1.SBs).

DOUBLE .EQU 0
MOV #BCDHI, RPARG ; Address of BCD MSDs
CALL #CNV_BCD_FP ; Call conversion subroutine
MOV @RPRES+, RES ; Store FP result (MSBs)
MOV @RPRES, RES+2 ; LSBs
. ; Continue with program

5.6.7.2.3 Floating Point to Binary Conversion

The floating point number pointed to by the register RPARG is converted to a 40-bit
signed binary number located on the top of the stack after conversion. See figure 5.20.
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15 0
Address n+4 LSBs
Address n+2
Address n Sign Byte MSBs «——— SP. RPARG
Figure H.20: Binary Number Format

CNV_FP_BIN The floating point number, RPARG points to, is converted to a 40-bit
signed binary number.

Range signed: DN 4o+ 2" -1
(OFF00,0000,0001h to 000FE FEFE FFFFh)
Errors: I the absolute value of the floating point number is greater than 210,

{, then the N bit in the status register is set to one. Otherwise the N
bit is cleared.

The result on top of the stack is the largest signed binary number
(saturation mode).

Output: A 40-bit signed, binary number at the top of the stack.
JLOAT The stack pointer SP, RPRES and RPARG point to the MSBs of the

thiree word binary result: an additional word is inserted. It is the re-
sponsibility of the calling software to correct the stack by one level
upwards after the reading of the result.

DOUBLE The stack pointer SP, RPRES and RPARG point to the MSBs of the
three word binary result.

EXAMPLE: The floating point number (.DOUBLE format) contained in the RAM locations
starting at label FPHI (MSBs) is converted to a 40-bit signed binary number. The result
is written to the RAM addresses RES, and RES+2 and RES+4 (LSBs).

DOUBLE . EQU 1
MOV #FPHI, RPARG ; Address of FP MSBs
CALL #CNV_FP_BIN ; Call conversion subroutine
JN ERR_HND ; | FP number| is toco big
MOV @RPRES+, RES ; Store binary result (MSBs)
MOV @RPRES+,RES+2
MOV @RPRES, RES+4 ; LSBs

; Continue with program
5.6.7.2.4 Floating Point to Binary Coded Decimal Conrersion

The floating point number pointed to by the register RPARG is converted to a signed 12-
digit BCD number located on the top of the stack after conversion. See figure 3. The MSD
of the result has a maximum value of 7 due to the sign bit that uses the MSB position.
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CNV_FP_BCD

Range:

Errors:

Output:
FLOAT

DOUBLE

The floating point number, RPARG points to, is converted to a 12-digit
signed BCD number.

SN 10" +1to+8x 10" -1

Three errors at different stages of the conversion are possible that

will set the N-bit in the status register:

L. The exponent value of the floating point number is greater than
39 which represents an absolute value greater than 10995 x 10"

2. The absolute value of the floating point number is greater than S
X 10" -1

3. The absolute value is greater than 1 x 10"

Otherwise the N bit is cleared.

The result on top of the stack is the largest signed BCD number in

case of an error.

A 12-digit signed BCD number at the top of the stack.

The stack pointer SP, RPRES and RPARG point to the MSDs of the
three word BCD result: an additional word is inserted. It is the re-
sponsibility of the calling software to correet the stack by one level
upwards after the reading of the result.

The stack pointer SP, RPRES and RPARG point to the MSDs of the
three word BCD result.

EXAMPLE: The floating point number (.FLOAT format) contained in the RAM locations

starting at label I

PHI (MSBs) is to be converted to a 12-digit BCD number. The result is

to be written to the RAM addresses RES, and RES+2 and RES+4 (LSDs).

DOUBLE .EQU

ERR_HND

0

#FPHI, RPARG ; Address of FP MSBs
#CNV_FP_BCD ; Call conversion subroutine
ERR_HND ; |FP number| is too big
@SP+,RES ; Store BCD result (MSDs)

@SP,RES+2
2(SP),RES+4

; SP is corrected by last instr.
; LSDs

; Continue with program

; Correct error here

5.6.7.3 Handling of non-integer Numbers

The conversion subroutines allow only the handling of integer numbers when converting

to or from floating

point numbers. The reasons for this restriction are:

1. The stack grows if non-integer handling is included
2. The necessary program code of the conversion software grows strongly

3. The integration
tines

of non-integer numbers is easier outside of the conversion subrou-

4. The execution time grows strongly due to the necessary successive divisions by 10 or
multiplications with 10.
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5.6.7.3.1 Binary to Floating Point Conversion

If the location of the decimal point in the binary or hexadecimal number is known. then
the correction of the result is as follows:

The resulting floating point number is divided by the constant 2" for binary numbers
resp. 16" for hexadecimal numbers (with m = 0.25n). This is made simply by subtracting
of n from the exponent of the floating point number. Overflow or underflow is not possi-
ble duc to the restricted range of the binary input (2" +1 to 42" -1) compared to the
range of the floating point numbers (-10™ to +10%).

[5XAMPLI: The binary 32-bit signed number contained in the RAM locations starting at
label BINHI (MSBs) is converted to a floating point number (.DOUBLE format). The vir-
tual decimal point of the binary input number is 5 bits left to the LSB (this means the in-
teger input number is 32 times too large). For example: The binary buffer contains
1011000 (88,,) but the real number is 10.11000 (2.75, 88/ 32 = 2.75)

MOV #BINHI, RPARG ; Address of binary buffer MSBs
CALL #CNV_BIN32 ; Call conversion subroutine
SUB.B #5,1(SP) ; Correct result's exp. by 275

; Continue with corrected number
5.6.7.3.2 Binary Coded Decimal to Floating Point Conversion

11 the location of the decimal point in the BCD number is known, then the correction of
the result is as follows:

The resulting floating point number is divided by the constant 10" after the conversion.
Overflow or underflow is not possible due to the restrieted range of the BCD input num-
ber (-8 x 10" to +8 x 10') compared to the range of the floating point numbers (-10* to
+10™).

EXAMPLE: The BCD number contained in the RAM locations starting at label BCDHI
(MSDs) is to be converted to a floating point number (FLOAT format). The virtual deci-
mal point of the BCD input number is 3 digits left to the LSD (this means the integer in-
put number is 1000-times too large). For example: The BCD buffer, containing 123456
represents the number 123.456

DOUBLE .EQU 0
MOV #BCDHI, RPARG ; Address of BCD buffer MSDs
CALL #CNV_BCD_FP ; Call conversion subroutine
MOV #FLT1000,RPARG ; Address of constant 1000
CALL #FLT_DIV ; Correct result by 1000
L : Continue with corrected input
FLT1000 .FLOAT 1000 ; Correction constant 1000

If the location of the decimal point relative to the number's end is contained in a byte
DPL (content > 0) the following code may be used:

DOUBLE .EQU 1
MOV #BCDHI, RPARG ; Address of BCD buffer MSDs
CALL #CNV_BCD_FP ; Call conversion subroutine
LOOP MOV #DBL10, RPARG ; Divide result by 10 as often -
CALL #FLT_DIV ; as DPL defines
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DEC.B DPL ; DPL - 1

JINZ LOOP ; Repeat as often as necessary

R ; Continue with corrected input
DBL10 .DOUBLE 10 ; Succ. correction constant 10

A2.6.7.3.3 Floating Point to Binary Conrersion

If the binary result should contain n binary digits after the deeimal point then the fol-
lowing procedure may be used:

The floating point number is multiplied by the constant 2" before the conversion call.
This is made simply by adding of n to the exponent of the floating point number. Over-
flow may oceur if the floating point number is very large and cannot be converted to bi-
nary anyway.

EXAMPLE: The floating point number contained in the RAM locations starting at label
I'PHI (MSBs) is to be converted to a binary number (FLOAT format). Four {ractional
bits of the resulting binary number should be included in the result (this means the re-
sult needs to be 16-times larger). For example: The floating point number is 12125, the
resulting binary number is 11000010, (€2 ) not only 1100, (C,) .

DOUBLE .EQU 0
MOV FPHI, 0 (SP) ; MSBs of FP number to TOS
MOV FPHI+2, 2 (SP) ; LSBs to TOS+2
ADD.B #4,1(SP) ; Correct exponent by 274
MOV SP, RPARG ; Act. pointer (if not yet done)

CALL #CNV_FP_BIN ; Call conversion subroutine
L ; Result includes 4 add. bits

If the floating point number to be converted may be modified then a simplified code may
be used:

MOV #FPHI, RPARG ; Address of FP number MSBs
ADD.B #4,1 (RPARG) ; Correct exponent by 274
CALL #CNV_FP_BIN ; Call conversion subroutine
. ; Result includes 4 add. bits

D.6.0.3.4 Floating Point to Binary Coded Decimal Conversion

If the BCD result of this conversion should contain n digits after the decimal point then
the following procedure may be used:

The floating point number is multiplied by the constant 10" before the conversion call.
Overflow may occur if the floating point number is very large and cannot be converted to
BCD anyway due to the buffer length (12 digits max.).

EXAMPLE: The floating point number contained in the RAM locations starting at label
FPHI (MSBs) is to be converted to a BCD number (.DOUBLE format). Two fractional dig-
its should be included in the BCD result (this means the BCD result needs to be 100-times
larger).

For example: The floating point number is 12.125,, the resulting BCD number written to
the TOS is 1212, (SW_RND = 0) respective 1213, (SW_RND = 1) not only 12

107

DOUBLE .EQU 1
MOV #FPHI, RPARG ; Address of FP number (MSBs)
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Moy #DBL100,RPRES ; Address of constant

CALL #FLT_MUL ; FP number z 100 ->

CALL #CNV_FP_BIN ; Call conversion sub
Pesult includes Z a

DEL10O0O .DOUBLE 100 ; Constant 100

5.6.7.4 Rounding and Truncation
Two different modes for the conversions can be selected during the assembly of the con-
version subroutines:

Truncation: Intermediate results of the conversion process are used as they are.
independent of the status of the next lower bits. This is the case if
SW_RND = 0 is selected during assembly.

Rounding: Intermediate results of the conversion process are rounded depending
on the status of the st bit not included in the current result (LSB-1).
If this bit is set (1) then the intermediate result is ineremented, oth-
erwise the result is not affeeted. If a carry occurs during the incre-
menting, then the exponent is corrected too. Rounding is used if
SW_RND = 1 is sclected during assembly.

Rounding is applied (if specified) at the following conversion steps:

Binary to Floating Point:  FLOAT: the MSB of the truncated word is added to the 24-bit

mantissa
DOUBLE: all 40 input bits are included. no rounding is pos-
sible

BCD to Floating Point: like with the binary to floating point conversion

IFloating Point to Binary:  the 2-1 bit (the bit representing 0.5) of the floating point
number is added to the binary integer result

IMloating Point to BCD: the 27" bit (the bit representing 0.5) of the floating point num-
ber is added to the binary integer that is converted to a BCD
number.

If rounding is specified during assembly, then the ROM-code of the conversion subrou-
tines is approximately 26 bytes larger than with truncation selected.

5.6.7.5 Erecution Cycles

To give an impression how long conversions will take, the needed cyeles for each conver-
sion are given for the converted values 1 and the largest possible value (8 x 1( - for
BCD conversions and 2% -1 for binary conversions). The cyele count is given for the
FLOAT and for the .DOUBLE format. Rounding is used.
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The eyele count for each conversion includes the loading of the pointer RPARG. the sub-
routine call and the conversion itself.

Conversion FLOAT 1 FLOAT max .DOUBLE 1 .DOUBLE max
CNV BIN40 418 67 422 71
CNV BCD FP 1223 890 1227 SO
CNV FP BIN H3H 67 D31 63
CNV FP BCD 1174 706 1170 701

5.6.8 Memory Requirements for the complete Floating Point Package

The memory requirements of an implemented Floating Point Package are depending on
the routines used and the precision applied. The following values refer to a completely
implemented package. Truncation is used with the Conversion Routines. The given num-
bers indicate bytes.

Package FLOAT .DOUBLE
Basic Arithmetic Opera- 632 720
Conversion Subroutines 344 340
Complete FPP 976 1060

5.6.9 Inclusion of the Floating Point Package into the Customer Software

This chapter shows how to insert the Floating Point Package into the user's written
software. The symbolic definition of the working registers makes it necessary {o include
the FPP-definition file (FPPDEF.ASM) before the customer's software, otherwise the as-
sembler allocates an address word for every use of one of the working registers during
the first pass of the assembler. During the second assembler pass this proofs to be wrong
and the assembler run will fail. The two files FPPO3.ASM and CNVO3.ASM need to be lo-
cated together as shown in the examples below. This is due to the common parts that are
connected with jumps.

The constant DOUBLE decides which FPP version will be generated.

.text 0E00Oh ; ROM/EPROM start address
STACK .equ 0300h ; Initial value for SP
DOUBLE .equ 1 ; Insert .DOUBLE format FPP
SW_UFLOW equ 0 ; Underflow 1s no error
SW_RND .equ 1 ; Use rounding for conversions
.copy c:\fpp\fppdef.asm ; Definitions
.copy c:\fpp\fpp03.asm ; FPP file
.copy c:\fpp\cnv03.asm ; Conversions

Customer software starts here

START

=
@]
<
*
[}
=
>
Q
=
9]
]

Allocate stack
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Power -up start address:

.sect "RstVect", OFFFEh
.word START ; Reset vector

A second possibility is shown below: the FPP i s located after the user's software:

.text 0E00OQ ; ROM start address
STACK .equ 0300h ; Initial value for SP
DOUBLE .equ 0 ; Insert .FLOAT format FPP
SW_UFLOW .equ 1 ; Underflow 1s an error
SW_RND .equ 0 ; No rounding for conversicns
.copy c:\fpp\fppdef . asm ; Definitions

Customer software starts here

START MOV #STACK, SP ; Allocate stack

..... ; End of user's software
.copy c:\fpp\fppO3.asm ; Copy FPP file
.copy c:\fpp\cnv03.asm ; Copy conversions

Power -up start address:

.sect "RstVect", OFFFEh
.word START ; Reset vector

5.6.10 Software Examples

5.6.10.1 Square Root Subroutines

The following two subroutines show the use of the Floating Point Package for the calcu-
lation of the square root out of a number. The NEWTONIAN approach is used:

[

I :(l5X£J”+’££l

Tt

The subroutines use the same approach as the FPP subroutines: the input and the result
are located on the top of the stack. A stack location is used for the counting of the ap-
proximation loops.

The used algorithm for the tst estimation leads to worst case errors of +41% and -29%.
The table below shows the maximum errors for each approximation step:

Step Max. Error Max. Error
Ist estimation x0 +41% -29%

Ist approximation x, +6% +6%

2nd approximation x, +0.17% +0.17%
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3rd approximation x, +1.5 ppm +1.5 ppm
4th approximation x, <2x10™ <2X10"
ath approximation x, <2x10™ <210

i Square Root Subroutine for .FLOAT format
Calculate the square root out of A. A is located on TOS, where
otherwise the results are located. The square root overwrites A
; For input RPARG and RPRES are not relevant
; SP, RPARG and RPRES point to the result on TOS

FLT_SQRT TST.B 2(SP) ; Argument negative?

JN SQRET ; Yes, return with N = 1
PUSH #5 ; Loop count

PUSH 8 (SP) ; A lsbs

PUSH 8 (SP) ; A msbs to xn

i The lst estimation x0 with halved exponent creates an error of
max. 41% (1.414):
this means 5 loops are sufficient for max. accuracy

XOR.B #080h, 1 (SP) ;

RRA.B 1 (SP) ; Exponent /2
XOR.B #080h, 1 (SP) ; Back to exponent format
SQLOOLP MOV SP, RPARG ; Pointer to xn
MOV SP,RPRES
ADD #8,RPRES ; Pointer to A
SUB #4,5p ; Allocate stack for result
CALL #FLT_DIV ; A/xn
ADD #4, RPARG ; Point to xn
CALL #FLT_ADD ;o A/Xn + xn
DEC.B 1 {RPRES) ;0.5 x (A/xn + xn) = xn+l
MOV @SP+,2(SP) ; Xn+l -» xn
MOV @SP+, 2 (SP)
DEC 4 (SP) ; Decr. loop count
JNZ SQLOOP
MOV @SP+, 6 (SP) ; N =0
MOV @SP+, 6 (SP) ; Root to result space
ADD #2,5P ; Skip loop count
SQRET MOV SP, RPARG ; Set RPARG and RPRES to result
ADD #2,RPARG
MOV RPARG, RPRES
RET

Square Root Subroutine for .DOUBLE format

; Calculate the square root out of A. A is located on TOS, where
; otherwise the results are located. The square root overwrites A
; For input RPARG and RPRES are not relevant

; SP, RPARG and RPRES point to the result on TOS

DBL_SQRT TST.B 2 (SP) ; Argument negative?
JN SQRET ; Yes, return with N = 1
PUSH #5 ; Loop count
PUSH 10(Sp) ; A lsbs
PUSH 10(sp) ; A mids
PUSH 10(sSPp) i A msbs for lst estimation xn

; The lst estimation x0 with halved exponent creates an error of
; max. 41% (1.414):
; this means 5 loops are sufficient for max. accuracy
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ZOR.B #080h, 1 (5P) ;

RRA.B 1(sSP) ; Exponent/2

XOR.B #080h, 1(SP) ; Back to exponent format
SQLOOP MOV SP, RPARG ; Pointer to xn

MOV SP,RPRES

ADD #10,RPRES ; Pointer to A

SUB #6,5P ; Allocate stack for result

CALL #FLT_ DIV ; A/¥n

ADD #6, RPARG ; Polnt to xn

CALL #FLT _ADD ; A/Xn 4+ Xn

DEC.B 1 (RPRES) ; 0.5 % (A/%xn + xn) = xn+l

MOV @sp+,4(5P) ; ®Xn+l -» xn

MOV @sp+,4 (SP)

MOV @SP+,4 (5P)

DEC 6(SP) ; Decr. loop counter

JNZ SQLOOP

MOV @sp+,8(SP) ; N =0

MOV @spP+,B8(SP) ; Root to result space

MOV @sP+,8(5P)

ADD #2,5P ; Skip loop count
SORET MOV SP, RPARG ; Set RPARG and RPRES to result

ADD #2, RPARG ; Correct for return address

MOV RPARG, RPRES

RET

5.6.10.2 Cubic Root Subroutines

The same way as shown for the square root the cubic root may be caleulated using the
NEWTONIAN approach. The formula for the cubice root out of Ais:

The used algorithm for the tst estimation of the cubic root leads to worst case errors of
+58% and -37%. The table below shows the maximum errors for cach approximation
step:

Step Max. Error Max. Error
1st estimation N, +58% -37%

Ist approximation X, +19% +25%

2nd approximation X, +3% +4.7%

3rd approximation X, +0.08% +0.2%

Ath approximation X, +0.7 ppm 4.6 ppm

Sth approximation X, <t4Ax10™ 2x10™"

The cubic root is calculated for the .FLOAT number on the top
; of the stack. The result is written there too.
; For input RPARG and RPRES are not relevant

SP, RPARG and RPRES point to the result on TOS

FLT_CUB .EQU S
PUSH #5 ; Loop count
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PUSH
PUSH

) ; A lsbs
) ; A msbs

The lst estimation x0 needs to be calculated very close to the
i final result: the exponent is divided by 3.

MOV.B 1 (SP),RPARG ; Exponent of A 00xx
MOV.B #080h, 1 (SP) ;7 Set exponent of A to 270
TST.B RPARG ; Exponent's sign?
JN DCLS2 ; positive
DCLS1 DEC.B 1(SP) ; Neg. exp.: exponent 1
ADD.B #3, RPARG ; Add 3 until 080h is reached
JN CBLOOP ; 080h is reached,
JMP DCLS1 ; Continue
DCL$3 INC.B 1(SP) ; Pos. exp.: exponent + 1
DCLS2 SUB.B #3, RPARG ; Subtr. 3 until 080h is reached
JN DCLS3 ; Continue
CRBLOOP MOV SP, RPARG ; Point to xn
MOV SP, RPRES
SUB #4,Sp ; Allocate stack for result
CALL #FLT _MUIL ;oxnt2
ADD #12,RPRES ; Point to A
CALL #FLT_DIV ;o A/xn"2
INC.B 5(SP) ;o Xn x 2
ADD #4, RPARG ; Point to 2xn
CALL #FLT_ADD ;o A/Xn"2 + 2xn
MOV #FLT3, RPARG ;o 1/3 x (A/xn"2 + 2xn) = xn+l
CALL #FLT DIV
MOV @SP+, 2 (SP) ; Xn+l -> xn
MOV @SP+,2 (SP)
DEC 4 (SP) ; Decr. loop count
JNZ CBLOOP
MOV @SSP+, 6(5P) ; N =20
MOV @SP+, 6 (SP) ; Root to result space
ADD #2,8P ; Skip loop count
MOV SP, RPARG ; Set RPARG and RPRES to result
ADD #2, RPARG ; Skip return address
MOV RPARG, RPRES
RET
FLT3 FLOAT 3.0 i Constant for cubic root

; The cubic root is calculated for the .DOUBLE number on the top
; of the stack. The result is written there too.

; For input RPARG and RPRES are not relevant

; SP, RPARG and RPRES point to the result on TOS

DBL_CUB .EQU S
PUSH #5 ; Loop count
PUSH 10 (SP) ; A LSBs -> xn
PUSH 10(SP)
PUSH 10(SP) ; A MSBs

; The lst estimation x0 needs to be calculated very close to the
; final result: the exponent is divided by 3.

MOV.B 1(SP),RPARG ; Exponent of A 00xx
MOV.B #080h, 1 (sP) ; Set exponent of A to 270
TST.B RPARG ; Exponent's sign?
JN DCLS$2 ; positive

DCLS1 DEC.B 1(sp) ; Neg. exp.: exponent - 1
ADD.B #3, RPARG i Add 3 until 080h is reached
JN CBLOOP ; 080h is reached,
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CELOOP

DBL3

JMP
INC.B
SUB.B
JN

MOV
MOV
SUB
CALL
ADD
CALL
INC.BE
ADD
CALL
MOV
CALL
MOV
MOV
MOV
DEC
JNZ
MOV
MOV
MOV
ADD
MOV
ADD
MOV
RET
.DOUBLE

DCLS1
1(sP)
#3,RPARG
DCLS$3

SP, RPARG
5P, RPRES
#6,5
#FLT_MUL
#16,RPRES
#FLT DIV
7(SP)

#6, RPARG
#FLT_ADD
#3, RPARG
#FLT_DIV
@sp+,4(SP)
@sp+,4(SP)
@sp+,4(SP)
6(5P)
CBLOOP
@sp+, 8(SP)
@sp+,8(SP)
@sp+, 8 (5P)
#2,5

SP, RPARG
#2, RPARG
RPARG, RPRES

3.0

5.6.10.3 Fourth Root Subroutine

Continue

Pos. exp.: exponent + 1

Subtr. 3 until 080h is reached
Continue

Point to xn

Allocate stack for result
¥n”2

Point to A

A/xn” 2

¥n X 2

Point to 2xn

A/¥n"2 + 2xn

1/3 % (A/®xn"2 + 2xn) = xn+l

¥n+l -- %n

Decr. loop count

Cubic root to result space

skip loop count
Set RPARG and RPRES
Skip return address

to result

Constant for cubic root

The fourth root of & number is calculated by calling the square root subroutine twice.

EXAMPLIS: the fourth root is caleulated for a number residing in RAM at address
NUMBER (MSBs). The fourth root is written to RESULT. The previous result on TOS
must not be overwritten.

PUSH
PUSH
CALL
CALL
MOV
MOV

NUMBER+2
NUMBER
#FLT_SQRT
#FLT_SQRT
@SP+,RESULT
@SP+,RESULT+2

5.6.10.4 Other Root Subroutines

LSBs of NUMBER to new space
MSBs of NUMBER

Square root on TOS

Fourth root on TOS

4th root MSBs

SP to previous result

The same way as shown above higher roots may be calculated using the NEWTONIAN
approach. The generie formula for the mth root out of A is:

[
€, = i\ (m—1)r, + i\

my
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5.6.10.5 Caleulations with Intermediate Results

If a calculation cannot be exeeuted straight forward but has intermediate results then
simply a new result space is used. This is done by subtracting 4 (FLOAT) resp. 6

(.DOUBLE) from the stack pointer SP.

ENXAMPLE: The function for ¢ shown below is to be caleulated. The example is shown for
the FLOAT format. for the .DOUBLE format 6 is used for the constants where 4 is used

now,

¢
C=axbh——

1t

SUB #4,Sp

MOV #a, RPRES
MOV #b, RPARG
CALL #FLT_MUL
SUB #4,5p

MOV #c,RPRES
MOV #d, RPARG
CALL #FLT_DIV
ADD #4, RPRES
CALL #FLT_SUB
MoV @sp+, 2 (SP)
MOV @SP+, 2 (SP)

; Housekeeping is made, SP points

RPRES

;

Allocate result space 0 (RS0)
Address a
Address b

a x b -> RSO
Allocate result
Address c
Address d

c/d -> RSI
Address (a x b) in RS0

e = (a x b) - ¢/d -» RS1
Result e to RSO
Overwrite (a x b) with e

(RS1)

space |

to RSO0 again, but not RPARG and

EXAMPLE: The multiply-and-add (MAC) function for ¢ shown below is calculated. The
example is written for the .DOUBLE format otherwise 4 is used for the constants where 6

is used now.

e, =axb+e,

)

SUB #6,5P

MOV #a,RPRES
MOV #b, RPARG
CALL #FLT_MUL
MOV #e,RPARG
CALL #FLT_ADD
MOV @RPARG+, e
MOV @RPARG+, e+2
MOV @RPARG, e+4

;

; SP and RPRES still point to the
; for the next argument address.

5.6.10.6 Absolute Value of a Number
If the absolute value of a number is needed, this is simply done by rese

of this number.

Allocate result space
Address a

Address b

axb

Address e

(a Xx b)+ e

Actualize e with result
MIDs

LSBs

result, RPARG may be used

tting the sign bit
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EXAMPLE: the absolute value of the result on the top of the stack is needed.

BIC #080h, 0(5P) ; |result]| on TOS

5.6.10.7 Change of the Sign of a« Number

S,

If & sign change is necessary (multiplication by -1), this is simply done by inverting the

sign bit of this number.

IEXAMPLIE: the sign of the result on the top of the stack is changed.

ZOR #0800, 0(5P) Negate result on TGOS

5.6.10.8 Integer Value of a Number

The integer value of a floating point number can be caleulated with the subroutine
FFLT_INTG below. The pointer RPARG is loaded with the address of the number, the re-
sull is placed on the top of the stack. No error is possible. Numbers lower than one are
returned as zero. The subroutine can handle FLOAT and .DOUBLLE formats.

value of the number RPARG points to.
RPARG, RPRES and $P point to it

the integer
top of the stack.

; Calculate
Result: on

COUNTER

FLT INTG MOV.B

1 (RPARG) , COUNTER

Exponent to

MOV @RPARG+, 2 (SP) MSBs and Exponent
MOV @RPARG+, 4 (SP) LSBs .FLOAT
L1f DOUBLE=1
MOV @RPARG, 6 (SP) LSBs .DOUBLE
.endif
MOV #0FFFFh, ARG2 MSB ; Mask for fractional par
Sit DOUBLE=1
MOV #0FFFFh, ARG2_MID
.endif
MOV #0FFFFh,ARG2 LSPR
JMP L$30
INTGLP CLRC ; Shift 0 in always
RRC.B ARG2_MSB ; Shift mask to next lower bit
Lif DOUBLE=1
RRC ARG2_MID
.endif
RRC ARG2_LSB
DEC COUNTER ; Shift as often as:
L$30 CMP #080h, COUNTER ; SHIFT COUNT = EXPONENT - 07Fh
JHS INTGLP
BIC ARG2_MSB, 2 (SP) ; Mask out fract. part
Sif DOUBLE=1
BIC ARG2_MID, 4 (SP) ; For .DOUBLE format
BIC ARG2_LSB, 6 (SP)
.else
BIC ARG2_LSB, 4 (SP) ; For .FLOAT format
.endif
MOV SP, RPARG ; Both pointer to result's MSBs
ADD #2, RPARG
MOV RPARG, RPRES
RET ; Return with Integer on TOS

EXAMPLE: the integer value of the floating point number residing at address VOL1 is
placed on TOS.
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Load pointer with address
Calculate integer of VOLI

#VOL1, RPARG ;
#FLT_INTG ;

2.6.10.9 Fractional Part of a Number

The fractional part of a floating point number can be caleulated with the subroutine
FLT_FRCT below. The pointer RPARG is loaded with the address of the number, the re-
sultis placed on the top of the stack. No error is possible. The subroutine can handle
both floating point formats. The subroutine calls the subroutine I'L'T_INTG shown above.
Integer values or very large numbers return a zero value due to the missing resolution:

DOUBLE format: numbers > 1.099512 x 10" (>2")
FLOAT format: numbers > LOTTT216 X107 (>27)
Calculate the fractional part of the number RPARG points to.
$ onotop of the stack. RPARG, RPRES and SP point to it
utine FLT INTG i1s called
tMOV RPARG, RPRES Copy operand’'s address
1t DOUBLE=1
PUSH 4 (RPARG) Copy operand to allow the use
cendi f ; of the value on TOS
PUSH 2 (RPARG)
PUSH @RPARG
CALL #FLT _INTG ; Integer part of operand to TOS
MOV SP, RPARG ; Integer part address
CALL #FLT_SUB ; Operand Integer part to TOS
Jif DOUBLE=1 ; Housekeeping:
MOV @SP+, 6 (SP) ; Fractional part back
MOV @SP4+, A(SP) .DOUBLE format
MOV @SP+,6(SP)
.else
MOV @sP+,4(SP) ; .FLOAT tformat
MOV @SP+, 4 (SP)
.endif
MOV SP, RPARG ; Both pointer to result s MSBs
ADD #2,RPARG
MOV RPARG, RPRES
RET

EXAMPLE: the fractional part of the floating point number R4 points to is placed on TOS.

R4, RPARG ; Load pointer with address
#FLT_FRCT ; Calculate fractional part
; Fractional part on TOS

MOV
CALL
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6 HINTS AND RECOMMENDATIONS

During the software development for the first MSP430 projects a lot of experience was
acquired. The following hints and recommendations are conceived for all programmers
and system designers having more experience with 4- and 8-bit microcomputers than
with 16-bit systems. Also mentioned are deviations which the MSP430 family has when
compared with other 16-bit architectures (e.g. the function of the carry bit as an inverted
zero bit with some instructions).

— Frequently used Bits: bits to be used frequently should be located always in bit posi-
tions 0, 1, 2,3, 7, 15. The first four bits can be set, reset and tested with constants
coming from the Constant Generator (1, 2, 4, 8), and the last two ones can be tested
casily with the conditional jump instructions JN and JGIE:

TST.B RSTAT ; TEST Bit7 (OV <- Q)
JGE BIT7LO ; JUMP IF MSB OF BYTE I35 0
TST MSTAT ; TEST BitlS5 (OV <- 0)
JN BIT15HI ; JUMP IF MSB OF WORD IS 1

- Use of BCD arithmetic: if simple up/down counters are used that are to be dis-
played: this saves time and ROM space due to the unnecessary binary-BCD conver-
sion.

EXAMPLIS: Countert (4 BCD digits) is incremented; Counter2 (S BCD digits) is deere-
mented by one.

CLRC : DADD adds Carry bit too!
DADD #0001, COUNTERL ; INCREMENT COUNTER1 DECIMALLY
CLRC

DADD #9999, COUNTER2 ; DECREMENT 8 DIGIT COUNTER2
DADD #9999, COUNTER2+2 ;DECIMALLY

— Conditional Assembly: this feature of the MSP430 assembler allows to get more than
one version out of one source. This reduces the effort to maintain software drastically:
only one version needs to be updated if changes are necessary. See section
"Conditional Assembly".

— Usage of Bytes: Use bytes wherever appropriate. The MSP430 allows using every in-
struetion with bytes. (exeeptions are only SWPB, SXT and CALL)

~ Use of Status Bytes or Words: Use status bytes or words, not flags for remembering
of states. This allows extremely fast branching in one instruction to the appropriate
handler. Otherwise a time (and ROM) consuming skip chain is necessary.

— Computing Software: Use integer routines if speed is essential; use FPP if complex
computing is necessary.
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Bit Test Instructions:

With the bit handling instruetions (BIS, BIT and BIC) more than one bit ¢an be han-
dled simultancously: up to 16 bits can be handled inside one instruetion.

The BIS instruction is equivalent to the logical OR and can be used this way

The BIC instruction is equivalent to the logical AND with the inverted source and can
be used this way

Use of the Addressing Modes:

Use the Symbolie Mode for random aceesses

Use the Absolute Mode for fixed addresses such as peripheral addresses

Use the Indexed Mode for random aceesses in tables

Use the Register Mode for time eritical processing and as the normal one

Use assigned registers for extremely eritical purposes: if a register contains always
the same information, then it is not necessary to save it and to load it afterwards. The
same is true for the restoring of the register when the task is done.

Stack Operations:
All items on the stack can be accessed direetly with the Indexed Mode: this allows
completely new applications compared with architeetures that have only simple
hardware stacks.
The stack size is limited only by the available RAM, not by hardware register limita-
tions.
NOTE
The above mentioned possibilities make rigid "house keeping” neces-
sary: every program part which uses the stack has to ensure that only
relevant information remains on the stack and that all irrelevant data is
removed. If this rule is not used consequently the stack will overtlow or
underflow. If complex stack handling is used it is advised to draw the
stack with its items and the stack pointer as shown with the examples
"Argument Transfer with Subroutine Calls" in the appendix.

The Program Counter PC: The PC can be accessed as every other register with all
instructions and all addressing modes. Be very careful when using this feature! Do not
use byte instructions when accessing the PC, due to the clearing of the upper byte
when used.

The Status Register SR: it can be accessed in register Mode only. Every status bit
can be set or reset alone or together with other ones. This feature may be used for
status transfer in subroutines.

Enabling of the General Interrupt: The instruction following the enabling of the in-
terrupt is executed before an interrupt is accepted:

EINT ; Enable interrupt (GIE)
CLRC ; This instruction is executed before
ADC R5 ; the 1lst interrupt is accepted
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MINIMUM

High Speed Multiplication: If highest possible speed is necessary for multiplications
then two possibilities exist.
Straight through programming: the effort used for the looping can be saved if the
shifts and adds are programmed straight through. The routine ends at the known MSB
of the multiplicand (here, at bit 13 due to an ADC result (14 bits) that is multiplied):

EZECUTION TIMES

TALY.

MEDIUM 96
MAXIMUM

FOR REGISTER USE

112

EXAMPLE
00000h % 00000h = O
0ASASh x 0SASAh
OFFFFh % OFFFFh

Fast Multiplication Routine: Part

Multiplication

MACUF CLR

RRA
JNC
ADD
ADDC

LSO RLA

RLC

RRA
JNC
ADD
ADDC

L$02 RLA

RLC

RRA
JNC
ADD
ADDC

L$014 RET

R6

R4

LS01
RS, R7
R6,R8

R4

L$014
RS, R7
R6,R8

(CYCLES

MSBs MULTIPLIER

LSB to carry
IF ZERO: DO NOTHING

IF ONE:

MULTIPLIER x 2

LSB to carry
IF ZERO: DO NOTHING
IF ONE: ADD MULTIPLIER TO RESULT

MULTIPLIER X

same way for bits

LSB to carry
IF ZERO: DO NOTHING
IF ONE: ADD MULTIPLIER TO RESULT

@ IMHZ, 16 bits):

)000000h
763E02h
FE00O0lh

used by signed and unsigned

ADD MULTIPLIER TO RESULT

2 to 12

Special Use of the Carry Bit: The following instructions have a special feature that is
valuable during serial to parallel conversion: the carry acts as an inverted zero bit.
This means if the result of an operation is zero then the carry is reset and vice versa.
The instruetions having this feature are:

XOR, SXT, INV, BIT, AND.

Without this feature a typical sequence for the conversion of an /O-port bit to a par-

allel word would look as follows:

RLA
BIT
Jz

INC

R5
#1,&I0IN
L$111

R5

Free bit
PO.0 high ?

Yes,

set

0 f

bit

or next info

0

164
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L$111 ; Info in bit 0
With this feature the above sequence is shortened to two instruetions:

BIT #1,&I0IN ; PO.0 high ? .NOT.Zero socarry
RLA RS ; Shift bit into RS

= The Carry Bit used for Increments: The carry bit can be used if inerements by one
are used:

ENAMPLE: If the RAM word COUNT is greater than or equal to the value 1000 then a
word COUNTER is to be ineremented by one

CMP #1000, COUNT ; COUNT ~= 1000
ADC COUNTER ;o It yes, carry 1

Immediate Addition of the Carry Bit: The carry bit can be added immediately. No
conditional jumps are necessary for counters longer than 16 bits:

i

ADD R5, COUNT ; Low part of COUNT
ADC COUNT+2 ; Medium part
ADC COUNT+4 ; High part of 48-bit counter

= "Fall Through" Programming: ROM space is saved if a subroutine call that is located
immediately before a RET instruction is changed. The called subroutine is located alf-
ter the instruction before the CALL, and the program falls through it. This saves 6
bytes of ROM: the CALL itself and the RET instruction. The I°C handler uses this

mode.

; Normal way: SUBR2 is called, afterwards returned

SUBR1 S
MOV R5,R6
CALL #SUBR2 ; Call subroutine
RET

"Fall Through" solution: SUBR2 is located after SUBRL

SUBEL ..
MOV R5,R6 ; Fall through to SUBR2

SUBR2 Start of subroutine SUBR2

RET

- Shift Operations for 32-bit Numbers: If shifts with numbers greater than 16 bits are
necessary the shift operations for the upper words must be RLC or RRC. If RLA or
RRA are used then only zeroes are shifted in

RLA R11 i MSB of low byte to carry
RLC R12 ; RLA is wrong here!
RRA R12 ; LSB of high byte to carry
RRC R11 ; RRA is wrong here!

; R13|R14|R15 = R10|R11,R12

®i3 TEXAS INSTRUMENTS 165



Hints and Recommendations MSP430 Family

— Interrupt Handlers: the length of interrupt handlers should be kept as short as pos-
sible. All necessary computations should be made in the background program (main
program). The activation and control can be made casily with status bytes.

6.1 Design Checklist

Several steps are necessary to complete a system consisting of an MSP430 and its pe-
ripherals with the necessary performance. Typical and recommended development steps
arc shown below. All of the tasks mentioned should be done carefully in order to prevent
trouble later on.

1. Definition of the tasks to be performed by the MSP430 and its peripherals.

2. Worst case timing considerations for all of the tasks to be done (interrupt timing. cal-
culation times, /0 ete.).

. Drawing of a complete hardware schematic. Decision which hardware options are
used (Supply voltage, pull-downs at the I/O-ports ?)

4. Worst case design for all of the external components.

5. Organization of the RAM and if present of the EEPROM.

6. IFlowcharting of the complete software.

7. Coding of the software with an editor

8. Assembling of the program with the ASM430 Assembler

9. Removing of the logical errors found by the ASM430 Assembler

10. Testing of the software with the SIM430 Simulator and EMU430 Emulator

ii. Repetition of the sieps 7 to 10 untii the software is error free

6.2 Most often occurring Software Errors

During software development the same errors are made by nearly all assembler pro-
gramrs. The following list contains the errors which are most often heard of and experi-
enceed.

— Missing "Housekeeping" during Stack Operations: if items are removed from or
placed onto the stack during subroutines or interrupt handlers, it is mandatory to
keep track of these operations. Any wrong positioning of the stack pointer will lead to
a program crash, due to wrong data being written into the Program Counter.

The Stack Pointer needs to be initialized before the EINT instruction is executed.

- Use of the wrong Jump Instructions: the conditional jump instruetions JLO and
JLT, or JHS and JGE, give different results if used for numbers above 07FFFh. It is
therefore necessary to distinguish always between signed and unsigned comparisons.

-~ Wrong Completion Instructions. Despite their virtual similarity. subroutines and
interrupt handlers need completely different actions for completion.
Subroutines end with the RET instruction: only the address of the next instruction
(the one following the subroutine call) is popped from the stack.

166 ®i3 TEXAS INSTRUMENTS



MSP430 Family Hints and Recommendations

Interrupt handlers end with the RETI instruction: two items are popped from the
stack, first the Status Register is restored and afterwards the address (the address
of the next instruction after the interrupted one ) is popped from the stack to the
Program Counter.

If RETI and RET are used wrongly then a wrong item is written into the PC anyway.
This means that the software will continue at random addresses and will therefore
hang-up.

- Addition and Subtraction of Numbers with differently located Deeimal Points: if num-
bers with virtual decimal points are used the addition or subtraction of numbers with
different fractional bits leads to errors. It is necessary to shift one of the operands in a
way to achieve equal fractional parts. See "Rules for the Integer Subroutines”.

— Byte [nstructions applied to Working Registers: byte instructions always clear the up-
per byte of the used working register (except CMP.B, TST.B, BIT.B). It is necessary
therefore to use word instructions if operations in working registers can exceed the
byvte range.

- Use of Byte Instructions with the Program Counter as Destination Register: if
the PC is the destination register byte instructions do not make sense. The clearing of
the PC's high byte is certainly wrong in any case. Instead, a register is to be used be-
fore the modification of the PC with the byte information.

- Use of falsely addressed Branches and Subroutine Calls: the destination of
branches and calls is used indirectly, and this means the content of the destination is
used as the address. These errors oceur most often with the symbolic mode and the
absolute mode:

CALL MAIN ; Subroutine's address is stored in MAIN
CALL #MAIN ; Subroutine starts at address MAIN

The real behaviour is seen easily when looking at the branch instruction: it is an
emulated instruction using the MOV instruction:

BR MAIN ; Emulated instruction BR
MOV MAIN,PC ; Emulation by MOV instruction

The addressing for the CALL instruction is exactly the same as for the BR instruc-
tion.

- Counters and Timers longer than 16 bits: if counters or timers longer than 16 bits
are modified by the foreground (interrupt routines) and used by the background it is
necessary to disable the timer interrupt (most simply with the GIE bit in SR) during
the reading of these words. If this is not done, the foreground can modify these words
between the reading of two words. This would mean that one word read contains the
old value and the other one the modified one.

EXAMPLE: The timer interrupt handler increments a 32-bit timer. The background soft-
ware uses this timer for calculations. The disabling of the interrupts avoids that a timer
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interrupt that oceurs between the reading of TIMLO and TIMHI can falsify the read in-
formation. This is the case if TIMLO overflows from OFFFIh to 0000h during the inter-
rupt routine: TIMLO was read with the old information OFFFFh and TIMHI contains the
new information x+1.

BT HAN INC TIMLO ; Incr. LO word
ADC TIMHI ; Incr. HI word
RETI

Background part copies TIMzx for calculations

DINT ; GIE - 0

NOP ; DINT needs 2 cycles
MOV TIMLO, R4 ; Copy LSDs

MOV TIMHI, RS ; COPY MSDs

EINT ; Enable interrupt again

Counters used by Foreground and Background: if counters are modified by the
foreground and read and cleared by the background care is to be taken that no counts
are lost. With the following example it is possible to loose a count if the interrupt oc-
curs between the MOV and the CLR instruetion: the additional count is not recognized
because CNTR (with its content 1) is eleared.

CNTF

[NT_HAN INC CNTR ; Incr. counter
RETI ; by interrupts

R Background program

MOV CNTR, STORE ; Read CNTR

P )

CLR CNTR ; Counts may be lost!

To avoid the loosing of counts the following solutions are possible for the background
part:

Background part switches off the interrupt during reading

DINT ; GIE <- 0 (inactive after MOV)
MOV CNTR, STORE ; Read CNTR

CLR CNTR ; Clear unmodified CNTR

EINT ; Enable interrupt agailn

; Background part uses difference of contents. If interrupt occurs
after the PUSH instruction, 1 remains in CNTR.

PUS CNTR : Copy CNTR
SUB *SP,CNTR ; Subtract read number from CNTR
POP STORE ; Place read info to STORE

Use of the PUSH Instruction: when using sophisticated stack processing it is often
overlooked that the PUSH instruetion decerements the stack pointer first and moves
the item afterwards.

EXAMPLE: The return address stored at TOS is to be moved one word down to free
space for an argument.

168 {Li TEXAS INSTRUMENTS



MSP430 Family Hints and Recommendations

PUSH d2p 5 WRONG! lst tree word (TOS-2) is copied
;oon itselt

PUSH 2(0p) ;o Correct, old TOS is pushed

ENXAMPLIE: The stored Stack Pointer SP does not point to the same stack address after
the restoring: it points to the address -2 afterwards.

SP ;ontore BP-2 on ostack

pPOP sSP ; Restore 8Sp-2 to sp U

- Register Overflow: it registers do not have the necessary length negative numbers
(MSB = 1) or too small numbers (register is reset to zero by overflow) may result. The
length of registers needs to be evaluated with "worst case” methods.

Interrupt Blocking: long interrupt routines should be avoided. If they are necessary
then the GIE bit located in the Status Register should be set at the start of these rou-
tines. Otherwise the disabled interrupt blocks all other interrupt sources.

Real Time Proce
able then errors will occur. "Worst case’
fitting of the algorithm.

sing: if the used algorithm is longer than the time slot that is avail-
"evaluations are necessary to guarantee the

— Open Inputs: cvery inputs needs to have a defined potential. Otherwise hum and
noise will influence the program flow.

— Crystal turn-on Time: if woken-up from the Low Power Mode 4 the ervstal needs a
relatively long time until it runs with the correet frequencey. This may last up to three
seconds. No correet timing is possible until the erystal reached its nominal frequency.
Up to this the MCLK generator runs with its lowest frequency.

- "Frequency Locked Loop" Considerations:.

— FLL turn-on Time: if woken-up from LPM3 the FLL needs approximately 6 cyeles to
reach the nominal frequency. This time needs to be added to the 6 eycles of the inter-
rupt latency time.

— Setting Time: the FLL needs a certain noninterrupted time to set the control value of
the DCO. If this time is not provided no control for the DCO is possible, it remains on
the same point. This time is spent best during initialization by a software loop with a
worst case length of 28 x 32 x 30.5 us = 27.3 ms. To allow the system clock the adap-
tation of the "Digitally Controlled Oscillator:" to the eventually changed tap, the FLIL-
loop should be closed during longer caleulations. This is simply done with the instrue-
tion:

BIC #SCGO, SR ; Turn on FLL-loop control
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— Supply Voltage for Battery driven Systems: if certain batteries are used the supply
voltage may go below the lower limit during Active Mode (especially if the ADC is
used) due to the high resistance of these batteries. A capacitor is necessary then in
parallel to the battery.

— Supply Voltage for Mains driven Systems: no hum, noise and spikes are allowed. If
present the reliability of the system and the accuracy of the ADC will decrease.

~ EEPROM clocking: for some EEPROMs the minimum clock duration is longer than
one MSPA30 instruction . This means that NOPs have to be included into the clock
timing.

6.3 Run Time Estimation

To get a quick overview coneerning the speed of agiven picce of software, the following
estimations may be used:

I the code contains all addressing modes then the estimation for the needed runtime
is:

can

L, = 0.75 cycles/byte

— 1f the code contains only or predominant register mode addressing then the estima-
tion for the needed runtime t,, is:

.= 0.5 eycles/byte
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7 INSTRUCTION SET

NOTE
All marked instructions (%) are emulated instruetions. The emulated in-
structions use core instruetions. Emulated single operand instructions
(e.g. RLA) can not use all seven addressing modes for the operand: only
the four addressing modes usable for the destination are possible. The
branch instruetion BR is the only exception to this rule.

(@7 stands for: the Carry bit has the inverted information of the Zero bit.
Status Bits

VioN 7Z ¢

*OADCLWEADCB dst dst + € -> dst R *
ADDLWEADD.B sreddst o sre + dst-> dst o
ADDCLW]EADDC.B sredst o osre + dst + C-> dst oo
ANDLWEAND.B sredst o sreand. dst -> dst 0 = % @
BIC.W]BIC.B sredst  notsre and. dst-> dst - - - -
BIS[.W[BIS.B sredst o osreor dst-> dst - - - -
BITL.W]RBIT.B sredstosreand. dst 0 k@

* BR dst Branch to ... - - - -
CALL dst PC+2-> stack, dst -> PC - - - -

* CLREWRCLREB dst Clear destination - - - -

* (CLRC Clear carry bit - - - 0

* CLRN Cicar negative bit -0 - -

* CLRZ Clear zero bit - -0 -
CMPLW].CMP.B sredst dst-sre oowoow

* DADCLWEDADC.B dst dst + C -> dst (decimal) BooRE
DADDL.W]:DADD.B sredst sre + dst + C -> dst (decimal) oowE

* DECLWEDECB dst dst- 1 -> dst R

* DECD[.W],DECD.B dst dst-2-> dst BooE o E

*  DINT Disable interrupt - - - -

* EINT Einable interrupt - - - -

* INCLLWLINC.B dst Increment destination, dst +1-> dst * =

* INCDL.WLINCD.B dst Double-Increment destination, ooR¥

dst+2->dst

* INVL.WLINV.B dst Invert destination oYk (al
JC/JHS Label Jump to Label if Carry-bit is set - - - -
JEQAIZ Label Jump to Label if Zero-bit is set - - - -
JGE Label Jump to Label if (N xor. V) =0 - - - -
JLT Label Jump to Label if (N .xor. V) = 1 - - - -
JMP Label Jump to Label unconditionally - - - -
JN Label Jump to Label if Negative-bit is set - - - -
JNC/ILO Label Jump to Label if Carry-bit is reset - - - -
JNE/INZ Label Jump to Label if Zero-bit is reset - - - -
MOV[.W];MOV.B sre,dst sre-> dst - - - -
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* NOP No operation - - - -
* POPLWEPOP.R dst Item from stack, SP+2 — 8P - - -
PUSH[.W[PUSH.B sre SP -2 5 SP,sre — @ SP - - - -
RIVTI Return from interrupt
TOS = SR,SP + 2 - 8P
TOS — PCSP + 2 — SZP
RIST Return from subroutine - - - -
TOS » PCSP + 2 - SP
* REALWERLAB dst Rotate left arithmetically
 RLCLWERLCE dst Rotate left through carry
RERALWLRRAB dst MSB -5 MSB L LSB s ¢ 0
RRC|.WRRC.B dst 5 MSB LSB ¢
*OSBOLWESBOB dst Subtract carry from destination
*OSKTC Set earry bit - - 1
*  SITN Set negative bit - - -
* ST Set zero bit - -1
SUBL.W]SURB.B sreydstdst+ notsre + 1 > dst ¢
SUBCLW]SUBC.B sredst dst + notsre + C o dst
SWPR dst swap hytes - - - -
SXT dst Bit7 — BitS o Bit1H 0 w7
*OOPSTLWETST.B dst Test destination ’
NOR[.W[XOR.B seeydst o osee xor. dst - dst (7
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APPENDIX
Al CPU REGISTERS
Al ot the MSPA30 CPU-registers ean be used with all instructions.

Al.1 The Program Counter R0

One ol the main differences to other microcomputer architectures relates to the Program
Counter (PC) that may be used as a normal register with the MSPA30. This means (hat
all of the instruetions and addressing modes may be used with the Program Counter (oo,
Abranch. for example, is made by simply moving an address into the PC:

MOV #LABEL, PC ;oJdump to address LAREL
MOV LABEL, C ;oJump to address contained
in address LARKL
MOV *R14, PC ;oJump indirect indirect R4
NOTE

The Program Counter always points to even addresses: this means that
the LSB is always zero. The software has to ensure that no odd ad-
dresses are used if the Program Counter is involved. Odd PC addresses
will result in non-predictable results.

A1.2 Stack Processing

A1.2.1 Usage of the System Stack Pointer R1

The system stack pointer (SP) is a normal register like the others. This means it can use
the same addressing modes. This gives good aceess to all items on the stack, not only to
the one on the top of the stack.

The system stack pointer SP is used for the storage of the following items:

|

Interrupt return addresses and Status Register contents
— Subroutine return addresses

Intermediate results

= Variables for subroutines, floating point package etc.

|

When using the system stack one should bear in mind that the microcomputer hardware
uses the stack pointer too for interrupts and subroutine calls. To ensure the error free
running of the program it is necessary to do exact "housckeeping” for the system stack.
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NOTE

The Stack Pointer always points to even addresses: this means the LSB
is always zero. The software has to ensure that no odd addresses are
used if the Stack Pointer is involved. Odd SP addresses will end up in
non-predictable results.

If bytes arce pushed on the system stack, only the lower byte is used:, the upper byte is
not modified.

PUSH #05h ; 0005h -~ TOS
PUSH.B #05h ; XX0Sh > TOS

A1.2.2 Software Stacks
Every register from R4 to R1H may be used as a software stack pointer. This allows in-
dependent stacks for jobs that have a need for this. Lvery part of the RAM may be used

for those software stacks.

IEXAMPLIE: R4 is to be used as a software stack pointer.

MOV #SW STACK, R4 ;Init. SW stack pointer
DECD R4 ;Decrement stack pointer
MOV item, 0 (R4) ;Store item on stack

. ; Proceed

MOV *R4+, 1tem2 ;Pop item from stack

Software stacks may be organized as byte stacks. This is not possible for the system
stack which always uses 16-bit words. The example shows R4 used as a byte stack
pointer:

MOV #SW_STACK,R4 ;Init. SW stack pointer
DEC R4 ;Decrement stack pointer
MOV.B item, 0 (R4) ;Store item on stack

R ; Proceed

MOV.B *R4+,1tem?2 ;Pop item from stack

A1.3 Byte and Word Handling

Lvery word is addressable by three addresses as shown in the figure below:
— The word address: An even address N

— The lower byte address: An even address N

— The upper byte address: An odd address N+1

If byte addressing is used, only the addressed byte is affected: no carry or overflow can
affeet the other byte.
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NOTE
Registers RO to R15 do not have an address but are treated in a speeial
way: Byte addressing always uses the lower byte of the register. The up-
per byte is set to zero if the instruetion modifies the destination: there-
fore all instructions clear the upper byte of a register except CMP.B,
TST.B. BIT.B and PUSH.B. The source is never affeeted.

The way an instruetion treats data is defined with its extension:

—~ The extension .B means byte handling
~ The extension W (or none) means word handling

ENXNAMPLES: The next two software lines are equivalent. The 16-bit values read in abso-
lute address 050h are added to the value in RS,

ADD &050h, RS ; ADD 16-bit VALUE TO RS
ADD.W &050h, RS ; ADD 16-bit VALUE TO RS

The 8-bit value read in the lower byte of absolute address 050h is added to the value con-
tained in the lower byte of RS, The upper byte of RS is set to zero.

ADD. B &050h, RS ; ADD 8-bit VALUE TO RS
Bit 15 8 7 0
Upper Byte Lower Byte
Odd Address N+1 Even Address N

Word Address N

Word/Byte Configuration

If registers are used with byte instructions the upper byte of the destination register is
set to zero for all instructions except CMP.B, TST.B, BIT.B and PUSH.B. It is necessary
therefore to use word instructions if the range of calculations can exceed the byte range.

EXAMPLE: The two signed bytes OP1 and OP2 have to be added and the result stored in
word OP3.

MOV.B OP1,R4 ; Fetch 1lst operand
SXT R4 ; Change to word format
MOV.B OP2,R5 ; Second operand

SXT RS

ADD.W R4,R5 ; Add words

MOV.W R5,0P3 ; 16-bit result to OP3
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A1.4 Constant Generator

A statistical look at the numbers used with the Immediate Mode shows that a few small
numbers are in use most often. The six most often used numbers can be addressed with
the four addressing modes of R3 (Constant Generator 2) and with the two not usable ad-
dressing modes of R2 (Status Register). The six constants that do not need an additional
16-bit word when used with the immediate mode are:

Number Hexadecimal Register Field Ad
+0 7.ero (0000h) R3 00
+1 positive one (0001h) R3 01
+2 positive two (0002h) I3 10
+1 positive four (0004h) R2 10
+8 positive cight (000Sh) R2 11
-1 negative one (IFIFI°h) R3 11

The assembler inserts (these ROM=saving addressing modes automatically if one ol the
above immediate constants is encountered. But only immediate constants are replace-
able this way, not - for example - index vadues.

I an immediate constant out of the Constant Generator is used then the execution time
is equal (o the exeeution time of the Register Mode.

The most often used bits of the peripheral registers arve located in the bits addressable
by the Constant Generator bits whenever possible.

A1.5 Addressing

The MSIAB0 allows seven addressing modes for the source operand and four or five ad-
dressing modes for the destination. The addressing modes used are:

Address Bits  Source Modes Destination Modes Example
00 Register Register RH

01 Indexed Indexed TABRS)
01 Svmbolic Svmbolic TABLIE
01 Absolute Absolute &BTCTL
10 Indirect - RO

1 Ind. autoinerement - RO+

11 Immediate -— #TABLE

The three missing addressing modes for the destination operand are not of much con-
cern for the programming:

Immediate Mode: Not necessary for the destination: immediate operands can be placed
always into the source. Only in a very few cases it will be necessary to have two immedi-
ate operands in one instruction
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Indirect Mode: If necessary the Indexed Mode with an index of zero is usable. For ex-
ample:

ADD #16,0(R6) ; *R6 + 16 -> *R6
cMP RS, 0 (SP) ; R5 equal to TOS?

The second example above can be written in the following way, saving 2 bytes of ROM:
CMP @SP,RS ; RS equal to TOS? (R5-TOS)

Indirect Autoincrement Mode: With table computing a method is usable that saves

ROM-space and the number of used registers additionally:

EXAMPLE: The content of TAB1 is to be written into TAB2. TAB1 ends at the word pre-
ceding TABIEND.

MOV #TAB1,RS ; Initialize pointer
LOOP MOV.B *R5+, TAB2-TAB1-1 (R5) ; Move TABl -> TAB2
CMP #TABLEND, RS ; End of TAB1 reached?

JNE LOOP ; No, proceed
S ; Yes, finished

The above example uses only one register instead of two and saves three words due to
the smaller initialization part. The normally written, longer loop is shown below

MOV #TABL1,R5 ;Initialize pointers
MOV #TAB2,R6

LOOP MOV.B *R5+,0(R6) ;Move TAB1 -> TAB2
INC R6
CMP #TABLEND, RS ;End of TABl reached?

JNE LOOP ;No, proceed
A ;Yes, finished

In other cases it can be possible to exchange source and destination operands to have
the auto increment feature available for a pointer.

Each of the seven addressing modes has its own features and advantages:

Register Mode: Fastest mode, least ROM requirements

Indexed Mode: Random access to tables

Symbolic Mode: Access to random addresses without overhead by loading of pointers
Absolute Mode: Access to absolute addresses independent of current program address

Indirect Mode: Table addressing via register, code saving access to often referenced
addresses

Indirect Autoincrement Mode: Table addressing with code saving automatic stepping,
for transfer routines
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Immediate Mode: Loading of pointers, addresses or constants within the instruction,

With the use of the Symbolic Mode an interrupt routine can be as short as possible. An
interrupt routine is shown which has to increment a RAM word COUNTER and to do a
comparison if a status byte STATUS has reached the value 5. If this is the case the status
byte is cleared otherwise the interrupt routine terminates:

INTRPT INC COUNTER ; Increment counter
CMP.B #5, STATUS ; STATUS = 57
JNE INTRET ;
CLR.B STATUS ;STATUS = 5: clear it

INTRET RETI

No loading of pointers or saving and restoring of registers is necessary. What is to be
done is made immediately without any overhead.

A1.6 Program Flow Control

A1.6.1 Computed Branches and Calls

The Branch instruction is an emulated instruction which moves the destination address
into the Program Counter:

MOV dst, PC ; EMULATION FOR BR dst

The possibility to access the Program Counter in the same way as all other registers
rives interesting options:
g

1. The destination address can be taken from tables
2. The destination address may be computed
3. The destination address may be a constant

A1.6.2 Nesting of Subroutines

Due to the stack orientation of the MSP430, one of the main problems of other architec-
tures does not play a role at all: subroutine nesting can proceed as long as RAM is avail-
able. There is no need to keep track of the subroutine calls as long as all subroutines
terminate with a "Return from Subroutine” instruction. If subroutines are left without the
RET instruction then some housekeeping is necessary: popping of the return address or
addresses from the stack.

A1.6.3 Nesting of Interrupts

Nesting of interrupts gives no problem at all, provided there is enough RAM for the stack.
IFor every oceurring interrupt two words on the stack are needed for the storage of the
Status Register and the return address. To enable nested interrupts it is only necessary
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to include an EINT instruction into the interrupt handler. If the interrupt handlers are as
short as possible (a good real-time practice) then nesting may not be necessary.
EXAMPLI: The Basie Timer interrupt handler is woken-up with 1 Hz only but has to do a
lot of things. The interrupt nesting is used therefore. The lateney time is S clock eyeles
only.

Interrupt handler for Rasic Timer: Wake-up with 1 Hz

BT _HAN EINT ; Enable interrupt for nesting

INC.RBR SECCONT ; Counter tor seconds +1
CMP.B #60, SECCNT ;L minute elap

JHS MINL ; Yes, do nece tasks
RETI ; No return to LPM3

One minute =lapsed: Return is removed from stack, a branch to
the necessary tasks is made. There it is decided how to proceed

MINIL INC MINCNT ; Minute counter +1

CLR SECCNT ;0 -» SECCNT
Start of necessary tas
RETI ; Tasks completed

AL6.4 Jumps

Jumps allow the conditional or unconditional leaving of the lincar program flow. The
Jumps cannot reach every address of the address map but they have the advantage to
need only one word and only two oscillator eyeles. The 10-bit offset field allows Jumps of
512 words maximum in the forward direction and 511 words maximum backwards. This
is four times the normal reach of a Jump: only in a few cases is the 2-word branch neces-
sary.

Fight Jumps are possible with the MSPA30; four of them have two mnemonices to allow
better readability:

Mnemonic Condition Purpose

JMP label Unconditional Jump Program control transfer
JEQ labelJump if Z = 1 After comparisons

J7Z  label JumpifZ =1 Test for zero contents
JNE labelJump ifZ =0 After comparisons

JNZ labelJump if Z = 0 Test for non zero contents

JHS labelJump if C =1 After unsigned comparisons

JC  label Jump if C =1 Test for set Carry

JLO labelJump if C =0 After unsigned comparisons

JNC label Jump if C = 0 Test for reset Carry

JGE labelJump if N . XOR.V =0 After signed comparisons

JLT label Jump if N . XOR.V =1 After signed comparisons
JN  label Jumpif N =1 Test for sign of a result
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NOTE

It is important to use the appropriate conditional Jump for signed and
unsigned data. For positive data (0 to 07FFFh resp. 0 to 07Fh) both
signed and unsigned conditional jumps behave similarly. This changes
completely when used with negative data (05000h to OFFFFh resp. 080h
to OFIFh): the signed conditional jumps treat negative data as smaller
numbers than the positive ones, and the unsigned conditional jumps
treat them as larger numbers than the positive ones.

No "Jump il Positive” is provided, only a "Jump if Negative”. But after several instructions
it is possible to use the "Jump if Greater Than or Equal” for this purpose. [t must be only
ensured that the instruction preceding the JGE resets the overflow bit V. The following
instructions ensure this:

AND src,dst ; V<= 0
BIT src,dst ; V<=0
RRA dst ; V<=0
SXT dst ; V<=0
TST dst ;v o«e- 0

If this feature is used it should be noted within the comment for later software modifica-
Ltions. For example:

MOV ITEM,R7 ; FETCH ITEM

TST R7 ; V <- 0, ITEM POSITIVE?

JGE ITEMPOS ; V=0: JUMP IF >= 0
NOTE

Il addresses are computed only the unsigned jumps are adequate: ad-
dresses are always unsigned, positive numbers.

No "Jump if Overflow" is provided because the Overflow Bit located in the Status Register
is used primarily for the signed jumps. If the status of the Overflow Bit is needed from
the software a simple bit test can be used:

oV .EQU 0100h ; Bit address in SR
BIT #0V, SR ; Test Overflow Bit

JINZ OVFL ; If OV = 1 branch to label OVFL
.. ; If OV = 0 continue here
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A2 SPECIAL CODING TECHNIQUES

The flexibility of the MSP430 CPU together with a powerful assembler allows coding
techniques not available with every microcomputer. The most important ones are ex-
plained below.

A2.1 Conditional Assembly

For a detailed deseription of the syntax please refer to "MSPA30 Family Assembler Lan-
cuage Tools".

Conditional assembly provides the possibility to compile different lines of souree into the
objeet file depending on the value of an expression that is defined in the source of the
program. This makes it casy to alter the behaviour of the code with modifying one single
line in the source.

The following example shows how to use conditional assembly. The example will allow
casy debugging of a program that processes input from the ADC by pretending that the
input of the ADC is always 07FFh. The following is the routine used for reading the input
of the ADC. It returns the value read from ADC input A0 in RS.

DEBUG .set 1 ;1= debugging mode; 0= normal mode
ACTL .set 0114h

ADAT .set 0118h

IFG2 .set 3

ADIFG .set 4

get_ADC_value:

LIF DEBUG=1

MOV #07FFh, R8

.ELSE

BIC #60, &ACTL ; input channel is A0

BIC.B #ADIFG, &IFG2

BIS #1,&ACTL ; start conversion
WAIT BIT.B #ADIFG, &IFG2

Jz WAIT ; wait until conversion ready

MOV &ADAT, R8

.ENDIF

RET

With a little further refining of the code better results can be achieved. The following
piece of code shows more built-in ways to debug the written code. The second 'debug
code', where debug=2, returns 0700h and 0800h alternately.

DEBUG .SET 1 ; 1= debug mode 1; 2= deb. mode 2; 0=
; normal mode

ACTL .SET 0114h

ADAT .SET 0118h

IFG2 .SET 3

ADIFG .SET 4
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get ADC_value:

VAR .SECT "VAR" ' 0200h
osC .WORD 0700h
IR DEBUG=1 ; returning constant value
MOV #07FFh,R8
.ELSEIF DEBUG=2 ; returning alternating value
MOV #0F00Oh,R8
SUB 0O5C,RE
MOV R8,058C
.ELSE
BIC #60h, &«ACTL ; input channel is A0
BIC #ADIFG, &IFG2
BIS #1,&ACTL ; start conversion
WAIT BIT #ADIFG, & IFG2
J2 WAIT ; wait until conversion ready
MOV &ADAT, R8
.ENDIF
RET

Conditional Assembly is not restricted to the debug phase of software development. The
main use is normally to get different software versions out of one source. For every ver-
sion only the necessary software parts are assembled and the not needed parts are left
out by Conditional Assembly. The big advantage is the single source that is to be main-
tained.

An example is a Floating Point Package with different number lengths (32, 48 and 64
bits) contained in one source. Before assembly the desived length is defined by an QU

direetive

A2.2 Position Independent Code

The architeeture of the MSP430 allows the casy implementation of "Position Independent
Code" (PIC). This is a code, which may run anywhere in the address space of a computer
without any relocation necessary. PIC is possible with the MSP430 mainly due to the al-
location of the PC inside the register bank. The availability of the PC is made much use
of. Links to other PIC-blocks are possible only by references to absolute addresses
(pointers).

EXAMPLE: Code is transferred to the RAM from an outside storage (EPROM, ROM.
EEPROM) and executed there with full speed. This code needs to be PIC. The loaded
code may have several purposes:

— Application specific software that is different for some devices
— Additional code that was not anticipated before mask generation
— Test routines for manufacturing purposes
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A2.2.1 Referencing of Code inside Position Independent Code
The referenced code or data is located in the same block of PIC as the program resides.
Jumps

Jumps are position independent anyway: their address information is an offset (o the
destination address.

Bravches

ADD @pC, PC ;Branch to label DESTINATION
.WORD DESTINATION-$

Subrowtine Calls

Calling a subroutine starting at the label SUBR:

MOV PC,Rn ;address SC+2 - AUX. REG
ADD #SUBR-5, Rn ;add offset (SUBR (SC+2))
CALL Rn ;SC+24SUBR- (SC+2)) - SUBR

Operations on Data

The symbolic addressing mode is position independent: an offset to the PC is used. No
special addressing is necessary

MOV DATA, Rn ;DATA is addressed
CMP DATAL, DATA2 ;symbolically

Jump Tables

The status contained in Rstatus decides where the SW continues. Rstatus contains o
multiple of 2 (0, 2,4 ... 2n). Range: +512 words, -511 words

ADD Rstatus, PC ;Rstatus = (2x status)
JMP STATUSO ;Code for status = 0
JMP STATUS1 ;Code for status = 2
JMP STATUSn ;Code for status = 2n

Branch Tables

The status contained in Rstatus decides where the SW continues. Rstatus contains a
multiple of 2 (0, 2, 4 ... 2n). Range: complete 64K

ADD TABLE (Rstatus),PC;Rstatus = status

TABLE .WORD STATUSO-TABLE ;offset for status = 0
.WORD STATUS1-TABLE ;offset for status = 2
.WORD STATUSn-TABLE ;offset for status = 2n
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A2.2.2 Referencing of Code outside of PIC (Absolute)

The referenced code or data is located outside the block of PIC. These addresses can be
absolute addresses only e.g. for linking to other blocks or peripheral addresses.

Branches
Branching to the absolute address DESTINATION:

BR #DESTINATION ; #DESTINATION -~ PC
Subroutine Calls
Calling a subroutine starting at the absolute address SUBR:

CALL #SUBR ; #SUBR -» PC
Operations on Data

Absolute mode (indexed mode with Reg = 0)

CMP &DATAL , &«DATAZ ;DATAL + 0 = DATAL
ADD &DATAL , Rn
PUSH &DATAZ ;DATAZ2 --» stack

Branch Tables

The status contained in Rstatus decides where the SW continues. Rstatus steps in in-
crements of 2. Tabie is focated in absofute address space:

MOV TABLE (Rstatus), PC;Rstatus = status

.sect XXX ;table 1in absolute addre space
TABLE .WORD STATUSO ;Code for status = 0

.WORD STATUSL ;Code for status = 2

.WORD STATUSN ;Code for status = 2n
Table is located in PIC address space, but addresses are absolute:

MOV Rstatus, Rhelp ;Rstatus contains status

ADD PC,Rhelp ;status + L$1 -> Rhelp
LS1L ADD #TABLE-LS$1,Rhelp ;status+L$1+TABLE-L$1

MOV @Rhelp, PC ;computed address to PC
TABLE .WORD STATUSO ;Code for status = 0

.WORD STATUS1 ;Code for status 2

.WORD STATUSN ;Code for status = Zn

The above shown program examples may be implemented as MACROs if needed. This
would ecase the usage and transparvencey.
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A2.3 Reentrant Code

If the same subroutine is used by the background program and interrupt routines, then
two copies of this subroutine are necessary with normal computer architectures. The
stack gives a method of programming that allows many tasks to use a single copy of the
same routine. This ability of sharing a subroutine for several tasks is called
"Reentrancy”.

Reentrancy allows the calling of a subroutine despite the fact that the current using task
has not vet finished the subroutine.

The main difference of a reentrant subroutine to a normal one is that the reentrant rou-
tine contains only "pure code": that is, no part of the routine is modified during the us-
age. The linkage between the routine itself and the calling software part is possible only
via the stack i.e. all arguments during calling and all results after completion have to be
placed on the stack and retrieved from there. The following conditions must be met for
"Reentrant Code":

- No usage of dedicated RAM; only stack usage

— I registers are used they need to be saved on the stack and restored from there.

EXAMPLE: A conversion subroutine "Binary to BCD" needs to be called from the back-
ground and the interrupt part. The subroutine reads the input number from TOS and
places the 5-digit result also on TOS (two words): the subroutines save all used registers
on the stack and restore them from there or they compute direetly on the stack.

PUSH R7 ; R7 CONTAINS THE BINARY VALUE
CALL #BINBCD ; TO BE CONVERTED TO BCD
MOV @sP+,LSD ; BCD-LSDs FROM STACK
MOV @SP+,MSD ; BCD-MSD FROM STACK
A2.4 Recursive Code

Recursive subroutines are subroutines that call themselves. This is not possible with

normal architectures; stack processing is necessary for this often used feature. A simple

example for recursive code is a lineprinter handler that calls itself for inserting of a

"Form Feed" after a certain number of printed lines. This self-calling allows using all of

the existent checks and features of the handler without the need to write it once more.

The following conditions must be met for "Recursive Code":

— No usage of dedicated RAM; only stack usage

— Atermination item must exist to avoid infinite nesting (e.g. the lines per page must be
greater than 1 with the above line printer example)

— If registers are used they need to be saved and restored on the stack

EXAMPLE: The line printer handler inserts a Form Feed after 70 printed lines

LPHAND PUSH R4 ; Save R4
CMP #70,LINES ; 70 lines printed?
JLT L$500 ; No, proceed
CALL #LPHAND ;
.BYTE CR,FF ; Yes, output Carriage Return
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; and Form Feed
LS500

A2.5 Flag Replacement by Status Usage
I'lags have several disadvantages if used for program control:

— Missing transparency (flags may depend on other flags)
Possibility of nonexistent flag combinations if not handled very carefully
Slow speed: The flags can be tested only serially

The MSPA30 allows the use of a status (contained in a RAM byte or register) which de-
fines the current program part to be used. This status is very desceriptive and prohibits
"monexistent” combinations. A sccond advantage is the high speed of the decision: one
instruetion only is needed to get to the start of the appropriate handler. See Branch Ta-
bles.

The program parts that are used currently define the new status dependent on the ac-
tual conditions: normally the status is only incremented, but it may change more ran-
domly too.

FXAMPLE: The status contained in register Rstatus decides where the software contin-
ues. Rstatus contains a multiple of 2.(0, 2,4 ... 2n)

Range: Complete 64K

MOV TABLE (Rstatus) , PC; status
TABLE .WORD STATUSC ; handler for status 0
.WORD STATUS L ; Address handler for status = .
.WORD STATUSN ; Address handler for status = on
STATUSO .. .. ; Start handler status 0O
INC Rstatus ; Next status is 1
JMP HEND ; Common end

The above solution has the disadvantage to use words even if the distances to the differ-
ent program parts are small. The next example shows the use of bytes for the branch ta-
ble. The SXT instruction allows backward references (handler starts on lower addresses
than TABLIEY).

; BRANCH TABLES WITH BYTES: Status in R5 (0, 1, 2, ..n)
Usable range: TABLE4-128 to TABLE4+126

PUSH.B TABLE4 (R5) ; STATUSx-TABLE4 -> STACK

SXT @sp ; Forward 'backward references

ADD @sp+, PC ; TABLE4+STATUSx-TABLE4 -> PC
TABLE4 CBYTE STATUSO-TABLE4 . DIFFERENCE TO START OF HANDLER

.BYTE STATUS1-TABLE4

.BYTE STATUSn-TABLE4 ; Offset for status = n
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T only forward references are possible (normal case) the addressing range can be dou-
bled. The next example shows this:
Stepping is forward only (with doubled forward range)

Status is contained in RS (0, 1, ..n)
Usable range: TABLES to TABLES+254

PUSH. B TABLES (R5) ; STATUSX -TABLE - UTACK

CLR.B 1(SpP) ; hi byte «- 0

ADD dSP+, PC ; TABLE+STATUSX - TABLE  ~ PC
TABLES .BYTE STATUSO-TABLES ;DIFFERENCE TO START OF HANDLER

.BYTE STATUSL-TABLES

.BYTE STATUSH-TABLES ;ottset for status n

The above example can be made shorter and faster if a register can be used:

i Stepping is torward only (with doubled forward range)
is contained in RS (0, 1, 2..n)

range: TABLES to TABLES:254

MOV. B TABLES (R5) ,R6 S STATUSX -TABLES - Rb

ADD , PC 25+ STATUSx - TABLES - PC
TABLE" .BYTE STATUSO-TABLES SNCE TO START OF HANDLER

.BYTE STATUSL -TABLES

.BYTE STATUSH-TABLES ;offset for status = n

The addressable range can be doubled once more with the following code: The status (0,
1. 2, .n) is doubled before its use.

The addressable range may be doubled with the following code:
; The "forward only" version with an available register (R6) is
; chown: Status 0, 1, 2 ...n

sable range: TABLE6 to TABLE6+510

MOV.B TABLE6 (R5) ,R6 ; (STATUSx-TABLE6) /2

RLA RE ; OTATUSx - TABLE6

ADD R6, PC ; TABLE6+STATUSX - TABLEG - PC
TABLE6 .BYTE (STATUZO-TABLEG) /2 ;

.BYTE (STATUS1-TABLEG) /2 :

.BYTE (STATUSNn-TABLE6) /2 ;offset for status = n

A2.6 Argument Transfer with Subroutine Calls

Subroutines often have arguments to work with. Several methods exist for the passing of
these arguments to the subroutine:

On the stack

- In the words (bytes) after the subroutine call

- In registers

Address is contained in the word after the subroutine call

[

!

The passed information itself may be numbers, addresses, counter contents, upper and
lower limits etc. It only depends on the application.
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A2.6.1 Arguments on the Stack

The arguments are pushed on the stack and read afterwards by the called subroutine.
The subroutine is responsible for the necessary housekeeping (here, the transfer of the
return address to the top of the stack).

Advantages:
— Usable generally; no registers have to be freed for argument passing
— Variable arguments are possible

Disadvantages:
- Overhead due to necessary housekeeping
— Not casy to understand

IEXAMPLIS: The subroutine SUBR gets its information from two arguments pushed onto
the stack before the calling. No information is given back, normal return from subroutine
is used.

PUSH argument 0 ; 1st ARGUMENT FOR SUBROUTINE
PUSH argument ] ; 2nd ARGUMENT
CALL #SUBR ; SUBROUTINE CALL

SUBR MOV 4 (SP) ,Rx ; COPY ARGUMENTO TO Rx
MOV 2(SP),Ry ; COPY ARGUMENT1 TO Ry
MOV @SP,4(SP) ; RETURN ADDRESS TO CORRECT LOC.
ADD #4,SP ; PREPARE SP FOR NORMAL RETURN
A ; PROCESSING OF DATA
RET ; NORMAL RETURN

After the subroutine eall the stack looks as follows:  After the RET, it looks like this:

TOS before CALL - SP =3

Argument0 Address N+4
Argument{ Address N+2
SPp—> Return Address Address N

_

EXAMPLE: The subroutine SUBR gets its information from two arguments pushed onto
the stack before the ealling. Three result words are returned on the stack: it is the re-
sponsibility of the calling program to pop the results from the stack.

PUSH argument0 ; lst ARGUMENT FOR SUBROUTINE
PUSH argumentl ; 2nd ARGUMENT

CALL #SUBR ; SUBROUTINE CALL

POP R15 ; RESULT2 -> RI15

POP R14 ; RESULT1 -> R14
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POP
MOV
MOV

SUBR

PUSH
MOV
MOV
MOV
RET

After the subroutine call the stack looks as follows:

R13
4 (SP) ,Rx
2(SP), Ry
2(SP)
RESULTO, 6 (SP)
L SP)
SP)

RESULTO -~ R13

; COPY ARGUMENTO TO Rx
; COPY ARGUMENTL TO Ry
; PROCESSING CONTINUES
; SAVE RETURN ADDRESS

; lst RESULT ON STACK

; 2nd RESULT ON STACK

; 3rd RESULT ON STACK

After the RET, it looks like this:

—
TOS betore CALL

Argument0 Address N+4 Resulto

Argument1 Address N+2 Resultt

SP Return Address Address N SP —> Result?

NOTE

Il the stack is involved during data transfers it is very important to have
in mind that only data at or above the top of stack (TOS, the word the SP
points to) is protected against overwriting by enabled interrupts. This
does not allow to move the SP above the last item on the stack: indexed
addressing is needed instead

A2.6.2 Arguments following the Subroutine Call

The arguments follow the subroutine call and are read by the called subroutine. The sub-
routine is responsible for the necessary housckeeping (here, the adaptation of the return
address on the stack to the 1st. word after the arguments).

Advantages:

~ Very clear and easily readable interface

Disadvantages:

— Overhead due to necessary housekeeping
- Only fixed arguments possible

EXAMPLE: The subroutine SUBR gets its information from two arguments following the

subroutine call. Information can be given back on the stack or in registers.

CALL
.WORD
.BYTE

#SUBR
START
24,0

; SUBROUTINE CALL
; START OF TABLE
; LENGTH OF TABLE,

FLAGS
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SUBF M7 45P, RS ; COPY ADDRESS
Mo @R5+,P6 ; MOJE 1st ARGUME

el
u

Moy @RS+, F7 ; MOVE ARGUMENT EYT
MO E5,0(5P) ; ADJUST RETUFINl ADDF
. ; PPOCESSING OF DATA
FET ; NOFMAL RETUPHN

A2.6.3 Arguments in Registers
The arguments are moved into defined registers and used afterwards by the subroutine

Advantages:

Simple interface and casy to understand
- Very fast

Variable arguments are possible

Disadvantages:
~ Registers have Lo be freed

EXAMPLIS: The subroutine SUBR gets its information inside two registers which are
loaded before the calling. Information can be given back, or not with the same registers.

MOV arg0,R5 ; lst ARGUMENT FOR SUBROUTINE
MOV argl,R6 ; 2nd ARGUMENT
CALL # SUBR ; SUBROUTINE CALL
SUBR R ; PROCESSING OF DATA
RETS ; NORMAL RETURN

A2.7 Interrupt Vectors in RAM

Il the destination address of an interrupt changes with the program run it is valuable to
have the possibility to modify the pointer. The vecetor itself (which resides in ROM) is not
changeable but a second pointer residing in RAM may be used for this purpose:

ENAMPLE: The interrupt handler for the Basie Timer starts at location BTHANT after
initialization and at BTHAN2 when a cerain condition is met (for example, calibration is
made).

. BASIC TIMER INTERRUPT GOES TO ADDRESS BTVEC. THE INSTRUCTION ; ;
"MOV @PC,PC" WRITES THE ADDRESS IN BTVEC+2 INTO THE PC: PROGRAM ;
CONTINUES AT THAT ADDRESS

.sect "VAR",0200h ; RAM START
BTVEC .word 0 ; OPCODE "MOV @PC,PC"
.word 0 ; ACTUAL HANDLER START ADDR.

; THE SOFTWARE VECTOR BTVEC IS INITIALIZED:
INIT MOV #04020h, BTVEC ; OPCODE "MOV @PC, PC
MOV #BTHANL, BTVEC+2 ; START WITH HANDLER BTHANL
; INITIALIZATION CONTINUES

THE CONDITION IS MET: THE BASIC TIMER INTERRUPT IS HANDLED

190 *Li TEXAS INSTRUMENTS



MSP430 Family APPENDIX

AT ADDRESS BTHAN2 STARTING NOW

MoV #BTHAN2, BTVEC+2 ; CONT. WITH ANOTHER HANDLER

THE INTERRUPT VECTOR FOR THE BASIC TIMER CONTAINS THE RAM
ADDRESS OF THE SOFTWARE VECTOR BTVEC:

Loryg OFFEZh ; VECTOR ADDRESS BASTC TIMER
.WORD BTVEC ; FETCH ACTUAL VECTOR THERE
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